This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 49

1988 All Soviet Union Mathematical Olympiad, 471

Find all positive integers $n$ satisfying $\left(1 +\frac{1}{n}\right)^{n+1} = \left(1 + \frac{1}{1998}\right)^{1998}$.

2006 IMO Shortlist, 7

For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$. [i]Proposed by Juhan Aru, Estonia[/i]

2013 IMAC Arhimede, 2

For all positive integer $n$, we consider the number $$a_n =4^{6^n}+1943$$ Prove that $a_n$ is dividible by $2013$ for all $n\ge 1$, and find all values of $n$ for which $a_n - 207$ is the cube of a positive integer.

1954 Putnam, B7

Tags: exponential , limit
Let $a>0$. Show that $$ \lim_{n \to \infty} \sum_{s=1}^{n} \left( \frac{a+s}{n} \right)^{n}$$ lies between $e^a$ and $e^{a+1}.$

2007 Germany Team Selection Test, 3

For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$. [i]Proposed by Juhan Aru, Estonia[/i]

1957 Putnam, A2

Let $a>1.$ A uniform wire is bent into a form coinciding with the portion of the curve $y=e^x$ for $x\in [0,a]$, and the line segment $y=e^a$ for $x\in [a-1,a].$ The wire is then suspended from the point $(a-1, e^a)$ and a horizontal force $F$ is applied to the point $(0,1)$ to hold the wire in coincidence with the curve and segment. Show that the force $F$ is directed to the right.

1976 IMO Longlists, 47

Prove that $5^n$ has a block of $1976$ consecutive $0's$ in its decimal representation.

2006 Greece JBMO TST, 2

Let $a,b,c$ be positive integers such that the numbers $k=b^c+a, l=a^b+c, m=c^a+b$ to be prime numbers. Prove that at least two of the numbers $k,l,m$ are equal.

2018 Junior Regional Olympiad - FBH, 5

Find all integers $x$ and $y$ such that $2^x+1=y^2$

2017 Balkan MO Shortlist, N3

Prove that for all positive integer $n$, there is a positive integer $m$ that $7^n | 3^m +5^m -1$.

2017 India PRMO, 5

Let $u, v,w$ be real numbers in geometric progression such that $u > v > w$. Suppose $u^{40} = v^n = w^{60}$. Find the value of $n$.

1984 All Soviet Union Mathematical Olympiad, 379

Find integers $m$ and $n$ such that $(5 + 3 \sqrt2)^m = (3 + 5 \sqrt2)^n$.

2007 Germany Team Selection Test, 3

For all positive integers $n$, show that there exists a positive integer $m$ such that $n$ divides $2^{m} + m$. [i]Proposed by Juhan Aru, Estonia[/i]

1980 Putnam, B1

For which real numbers $c$ is $$\frac{e^x +e^{-x} }{2} \leq e^{c x^2 }$$ for all real $x?$

2015 Dutch IMO TST, 5

For a positive integer $n$, we de ne $D_n$ as the largest integer that is a divisor of $a^n + (a + 1)^n + (a + 2)^n$ for all positive integers $a$. 1. Show that for all positive integers $n$, the number $D_n$ is of the form $3^k$ with $k \ge 0$ an integer. 2. Show that for all integers $k \ge 0$ there exists a positive integer n such that $D_n = 3^k$.

2016 Dutch IMO TST, 2

Determine all pairs $(a, b)$ of integers having the following property: there is an integer $d \ge 2$ such that $a^n + b^n + 1$ is divisible by $d$ for all positive integers $n$.

2005 IMO Shortlist, 4

Find all positive integers $ n$ such that there exists a unique integer $ a$ such that $ 0\leq a < n!$ with the following property: \[ n!\mid a^n \plus{} 1 \] [i]Proposed by Carlos Caicedo, Colombia[/i]

1982 All Soviet Union Mathematical Olympiad, 329

a) Let $m$ and $n$ be natural numbers. For some nonnegative integers $k_1, k_2, ... , k_n$ the number $$2^{k_1}+2^{k_2}+...+2^{k_n}$$ is divisible by $(2^m-1)$. Prove that $n \ge m$. b) Can you find a number, divisible by $111...1$ ($m$ times "$1$"), that has the sum of its digits less than $m$?

2009 IMO Shortlist, 7

Let $a$ and $b$ be distinct integers greater than $1$. Prove that there exists a positive integer $n$ such that $(a^n-1)(b^n-1)$ is not a perfect square. [i]Proposed by Mongolia[/i]

2015 Indonesia MO Shortlist, N4

Suppose that the natural number $a, b, c, d$ satisfy the equation $a^ab^{a + b} = c^cd^{c + d}$. (a) If gcd $(a, b) = $ gcd $(c, d) = 1$, prove that $a = c$ and $b = d$. (b) Does the conclusion $a = c$ and $b = d$ apply, without the condition gcd $(a, b) = $ gcd $(c, d) = 1$?

1958 February Putnam, A3

Real numbers are chosen at random from the interval $[0,1].$ If after choosing the $n$-th number the sum of the numbers so chosen first exceeds $1$, show that the expected value for $n$ is $e$.

2009 Federal Competition For Advanced Students, P2, 1

If $x,y,K,m \in N$, let us define: $a_m= \underset{k \, twos}{2^{2^{,,,{^{2}}}}}$, $A_{km} (x)= \underset{k \, twos}{ 2^{2^{,,,^{x^{a_m}}}}}$, $B_k(y)= \underset{m \, fours}{4^{4^{4^{,,,^{4^y}}}}}$, Determine all pairs $(x,y)$ of non-negative integers, dependent on $k>0$, such that $A_{km} (x)=B_k(y)$

1982 All Soviet Union Mathematical Olympiad, 341

Prove that the following inequality is valid for the positive $x$: $$2^{x^{1/12}}+ 2^{x^{1/4}} \ge 2^{1 + x^{1/6} }$$

1990 Mexico National Olympiad, 3

Show that $n^{n-1}-1$ is divisible by$ (n-1)^2$ for $n > 2$.