This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 49

1992 Poland - First Round, 8

Given is a positive integer $n \geq 2$. Determine the maximum value of the sum of natural numbers $k_1,k_2,...,k_n$ satisfying the condition: $k_1^3+k_2^3+ \dots +k_n^3 \leq 7n$.

2008 ITest, 70

After swimming around the ocean with some snorkling gear, Joshua walks back to the beach where Alexis works on a mural in the sand beside where they drew out symbol lists. Joshua walks directly over the mural without paying any attention. "You're a square, Josh." "No, $\textit{you're}$ a square," retorts Joshua. "In fact, you're a $\textit{cube}$, which is $50\%$ freakier than a square by dimension. And before you tell me I'm a hypercube, I'll remind you that mom and dad confirmed that they could not have given birth to a four dimension being." "Okay, you're a cubist caricature of male immaturity," asserts Alexis. Knowing nothing about cubism, Joshua decides to ignore Alexis and walk to where he stashed his belongings by a beach umbrella. He starts thinking about cubes and computes some sums of cubes, and some cubes of sums: \begin{align*}1^3+1^3+1^3&=3,\\1^3+1^3+2^3&=10,\\1^3+2^3+2^3&=17,\\2^3+2^3+2^3&=24,\\1^3+1^3+3^3&=29,\\1^3+2^3+3^3&=36,\\(1+1+1)^3&=27,\\(1+1+2)^3&=64,\\(1+2+2)^3&=125,\\(2+2+2)^3&=216,\\(1+1+3)^3&=125,\\(1+2+3)^3&=216.\end{align*} Josh recognizes that the cubes of the sums are always larger than the sum of cubes of positive integers. For instance, \begin{align*}(1+2+4)^3&=1^3+2^3+4^3+3(1^2\cdot 2+1^2\cdot 4+2^2\cdot 1+2^2\cdot 4+4^2\cdot 1+4^2\cdot 2)+6(1\cdot 2\cdot 4)\\&>1^3+2^3+4^3.\end{align*} Josh begins to wonder if there is a smallest value of $n$ such that \[(a+b+c)^3\leq n(a^3+b^3+c^3)\] for all natural numbers $a$, $b$, and $c$. Joshua thinks he has an answer, but doesn't know how to prove it, so he takes it to Michael who confirms Joshua's answer with a proof. What is the correct value of $n$ that Joshua found?

2017 CCA Math Bonanza, I3

A sequence starts with $2017$ as its first term and each subsequent term is the sum of cubes of the digits in the previous number. What is the $2017$th term of this sequence? [i]2017 CCA Math Bonanza Individual Round #3[/i]

2015 Middle European Mathematical Olympiad, 4

Find all pairs of positive integers $(m,n)$ for which there exist relatively prime integers $a$ and $b$ greater than $1$ such that $$\frac{a^m+b^m}{a^n+b^n}$$ is an integer.

2011 Romania National Olympiad, 1

Let be a natural number $ n $ and $ n $ real numbers $ a_1,a_2,\ldots ,a_n $ such that $$ a_m+a_{m+1} +\cdots +a_n\ge \frac{(m+n)(n-m+1)}{2} ,\quad\forall m\in\{ 1,2,\ldots ,n \} . $$ Prove that $ a_1^2+a_2^2+\cdots +a_n^2\ge\frac{n(n+1)(2n+1)}{6} . $

1968 IMO Shortlist, 23

Find all complex numbers $m$ such that polynomial \[x^3 + y^3 + z^3 + mxyz\] can be represented as the product of three linear trinomials.

2020 AIME Problems, 12

Let $n$ be the least positive integer for which $149^n - 2^n$ is divisible by $3^3 \cdot 5^5 \cdot 7^7$. Find the number of positive divisors of $n$.

2011 USAMTS Problems, 2

Let $x$ be a complex number such that $x^{2011}=1$ and $x\neq 1$. Compute the sum \[\dfrac{x^2}{x-1}+\dfrac{x^4}{x^2-1}+\dfrac{x^6}{x^3-1}+\cdots+\dfrac{x^{4020}}{x^{2010}-1}.\]

2024-25 IOQM India, 1

The smallest positive integer that does not divide $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9$ is:

2007 iTest Tournament of Champions, 4

For each positive integer $n$, let $S_n = \sum_{k=1}^nk^3$, and let $d(n)$ be the number of positive divisors of $n$. For how many positive integers $m$, where $m\leq 25$, is there a solution $n$ to the equation $d(S_n) = m$?

2024 Indonesia MO, 2

The triplet of positive integers $(a,b,c)$ with $a<b<c$ is called a [i]fatal[/i] triplet if there exist three nonzero integers $p,q,r$ which satisfy the equation $a^p b^q c^r = 1$. As an example, $(2,3,12)$ is a fatal triplet since $2^2 \cdot 3^1 \cdot (12)^{-1} = 1$. The positive integer $N$ is called [i]fatal[/i] if there exists a fatal triplet $(a,b,c)$ satisfying $N=a+b+c$. (a) Prove that 16 is not [i]fatal[/i]. (b) Prove that all integers bigger than 16 which are [b]not[/b] an integer multiple of 6 are fatal.

1982 Bundeswettbewerb Mathematik, 4

Let $n$ be a positive integer. If $4^n + 2^n + 1$ is a prime, prove that $n$ is a power of three.

2020 AMC 10, 25

Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product$$n = f_1\cdot f_2\cdots f_k,$$where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$? $\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184$

1979 IMO Longlists, 26

Let $n$ be a positive integer. If $4^n + 2^n + 1$ is a prime, prove that $n$ is a power of three.

1999 Korea Junior Math Olympiad, 2

Three integers are given. $A$ denotes the sum of the integers, $B$ denotes the sum of the square of the integers and $C$ denotes the sum of cubes of the integers(that is, if the three integers are $x, y, z$, then $A=x+y+z$, $B=x^2+y^2+z^2$, $C=x^3+y^3+z^3$). If $9A \geq B+60$ and $C \geq 360$, find $A, B, C$.

2001 Greece JBMO TST, 1

a) Factorize $A= x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2$ b) Prove that there are no integers $x,y,z$ such that $x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=2000 $

2004 National Olympiad First Round, 24

What is the sum of cubes of real roots of the equation $x^3-2x^2-x+1=0$? $ \textbf{(A)}\ -6 \qquad\textbf{(B)}\ 2 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 11 \qquad\textbf{(E)}\ \text{None of above} $

2022 Germany Team Selection Test, 1

Let $a_1, a_2, \ldots, a_n$ be $n$ positive integers, and let $b_1, b_2, \ldots, b_m$ be $m$ positive integers such that $a_1 a_2 \cdots a_n = b_1 b_2 \cdots b_m$. Prove that a rectangular table with $n$ rows and $m$ columns can be filled with positive integer entries in such a way that * the product of the entries in the $i$-th row is $a_i$ (for each $i \in \left\{1,2,\ldots,n\right\}$); * the product of the entries in the $j$-th row is $b_j$ (for each $i \in \left\{1,2,\ldots,m\right\}$).

1978 IMO Longlists, 26

For every integer $d \geq 1$, let $M_d$ be the set of all positive integers that cannot be written as a sum of an arithmetic progression with difference $d$, having at least two terms and consisting of positive integers. Let $A = M_1$, $B = M_2 \setminus \{2 \}, C = M_3$. Prove that every $c \in C$ may be written in a unique way as $c = ab$ with $a \in A, b \in B.$

1967 IMO Shortlist, 1

Decompose the expression into real factors: \[E = 1 - \sin^5(x) - \cos^5(x).\]

2009 Stanford Mathematics Tournament, 2

Factor completely the expression $(a-b)^3+(b-c)^3+(c-a)^3$

1992 Baltic Way, 3

Find an infinite non-constant arithmetic progression of natural numbers such that each term is neither a sum of two squares, nor a sum of two cubes (of natural numbers).

2020 AMC 12/AHSME, 24

Let $D(n)$ denote the number of ways of writing the positive integer $n$ as a product$$n = f_1\cdot f_2\cdots f_k,$$where $k\ge1$, the $f_i$ are integers strictly greater than $1$, and the order in which the factors are listed matters (that is, two representations that differ only in the order of the factors are counted as distinct). For example, the number $6$ can be written as $6$, $2\cdot 3$, and $3\cdot2$, so $D(6) = 3$. What is $D(96)$? $\textbf{(A) } 112 \qquad\textbf{(B) } 128 \qquad\textbf{(C) } 144 \qquad\textbf{(D) } 172 \qquad\textbf{(E) } 184$

2017 Pan-African Shortlist, N2

For which prime numbers $p$ can we find three positive integers $n$, $x$ and $y$ such that $p^n = x^3 + y^3$?

2023 Bangladesh Mathematical Olympiad, P3

Solve the equation for the positive integers: $$(x+2y)^2+2x+5y+9=(y+z)^2$$