This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

1990 IMO Longlists, 29

Function $f(n), n \in \mathbb N$, is defined as follows: Let $\frac{(2n)!}{n!(n+1000)!} = \frac{A(n)}{B(n)}$ , where $A(n), B(n)$ are coprime positive integers; if $B(n) = 1$, then $f(n) = 1$; if $B(n) \neq 1$, then $f(n)$ is the largest prime factor of $B(n)$. Prove that the values of $f(n)$ are finite, and find the maximum value of $f(n).$

1992 IMO Longlists, 43

Find the number of positive integers $n$ satisfying $\phi(n) | n$ such that \[\sum_{m=1}^{\infty} \left( \left[ \frac nm \right] - \left[\frac{n-1}{m} \right] \right) = 1992\] What is the largest number among them? As usual, $\phi(n)$ is the number of positive integers less than or equal to $n$ and relatively prime to $n.$

2009 Romanian Masters In Mathematics, 1

For $ a_i \in \mathbb{Z}^ \plus{}$, $ i \equal{} 1, \ldots, k$, and $ n \equal{} \sum^k_{i \equal{} 1} a_i$, let $ d \equal{} \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$. Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i \equal{} 1} (a_i!)}$ is an integer. [i]Dan Schwarz, Romania[/i]

2010 Contests, 3

Three speed skaters have a friendly "race" on a skating oval. They all start from the same point and skate in the same direction, but with different speeds that they maintain throughout the race. The slowest skater does $1$ lap per minute, the fastest one does $3.14$ laps per minute, and the middle one does $L$ laps a minute for some $1 < L < 3.14$. The race ends at the moment when all three skaters again come together to the same point on the oval (which may differ from the starting point.) Determine the number of different choices for $L$ such that exactly $117$ passings occur before the end of the race. Note: A passing is defined as when one skater passes another one. The beginning and the end of the race when all three skaters are together are not counted as passings.

2019 PUMaC Algebra A, 8

For real numbers $a$ and $b$, define the sequence $\{x_{a,b}(n)\}$ as follows: $x_{a,b}(1)=a$, $x_{a,b}(2)=b$, and for $n>1$, $x_{a,b}(n+1)=(x_{a+b}(n-1))^2+(x_{a,b}(n))^2$. For real numbers $c$ and $d$, define the sequence $\{y_{c,d}(n)\}$ as follows: $y_{c,d}(1)=c$, $y_{c,d}(2)=d$, and for $n>1$, $y_{c,d}(n+1)=(y_{c,d}(n-1)+y_{c,d}(n))^2$. Call $(a,b,c)$ a good triple if there exists $d$ such that for all $n$ sufficiently large, $y_{c,d}(n)=(x_{a,b}(n))^2$. For some $(a,b)$ there are exactly three values of $c$ that make $(a,b,c)$ a good triple. Among these pairs $(a,b)$, compute the maximum value of $\lfloor 100(a+b)\rfloor$.

1981 Canada National Olympiad, 5

$11$ theatrical groups participated in a festival. Each day, some of the groups were scheduled to perform while the remaining groups joined the general audience. At the conclusion of the festival, each group had seen, during its days off, at least $1$ performance of every other group. At least how many days did the festival last?

2010 Malaysia National Olympiad, 8

For any number $x$, let $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$. A sequence $a_1,a_2,\cdots$ is given, where \[a_n=\left\lfloor{\sqrt{2n}+\dfrac{1}{2}}\right\rfloor.\] How many values of $k$ are there such that $a_k=2010$?

2006 Federal Competition For Advanced Students, Part 2, 1

Let $ N$ be a positive integer. How many non-negative integers $ n \le N$ are there that have an integer multiple, that only uses the digits $ 2$ and $ 6$ in decimal representation?

2001 Vietnam Team Selection Test, 2

Let an integer $n > 1$ be given. In the space with orthogonal coordinate system $Oxyz$ we denote by $T$ the set of all points $(x, y, z)$ with $x, y, z$ are integers, satisfying the condition: $1 \leq x, y, z \leq n$. We paint all the points of $T$ in such a way that: if the point $A(x_0, y_0, z_0)$ is painted then points $B(x_1, y_1, z_1)$ for which $x_1 \leq x_0, y_1 \leq y_0$ and $z_1 \leq z_0$ could not be painted. Find the maximal number of points that we can paint in such a way the above mentioned condition is satisfied.

2022/2023 Tournament of Towns, P2

А positive integer $n{}$ is given. For every $x{}$ consider the sum \[Q(x)=\sum_{k=1}^{10^n}\left\lfloor\frac{x}{k}\right\rfloor.\]Find the difference $Q(10^n)-Q(10^n-1)$. [i]Alexey Tolpygo[/i]

1957 Moscow Mathematical Olympiad, 353

Solve the equation $x^3 - [x] = 3$.

2005 China Second Round Olympiad, 3

For each positive integer, define a function \[ f(n)=\begin{cases}0, &\text{if n is the square of an integer}\\ \\ \left\lfloor\frac{1}{\{\sqrt{n}\}}\right\rfloor, &\text{if n is not the square of an integer}\end{cases}. \] Find the value of $\sum_{k=1}^{200} f(k)$.

2016 Mathematical Talent Reward Programme, MCQ: P 14

Let $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. Find $x$ such that $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor \rfloor = 88$ [list=1] [*] $\pi$ [*] 3.14 [*] $\frac{22}{7}$ [*] All of these [/list]

2024/2025 TOURNAMENT OF TOWNS, P1

On the blackboard, there are numbers $1, 2, \dots , 100$. At each move, Bob erases arbitrary two numbers $a$ and $b$, where $a \ge b > 0$, and writes the single number $\lfloor{a/b}\rfloor$. After $99$ such moves the blackboard will contain a single number. What is its maximum possible value? (Reminder that $\lfloor{x}\rfloor$ is the maximum integer not exceeding $x$.)

2023 Turkey Junior National Olympiad, 4

Let $x_1,x_2,\dots,x_{31}$ be real numbers. Then find the maximum value can $$\sum_{i,j=1,2,\dots,31, \; i\neq j}{\lceil x_ix_j \rceil }-30\left(\sum_{i=1,2,\dots,31}{\lfloor x_i^2 \rfloor } \right)$$ achieve. P.S.: For a real number $x$ we denote the smallest integer that does not subseed $x$ by $\lceil x \rceil$ and the biggest integer that does not exceed $x$ by $\lfloor x \rfloor$. For example $\lceil 2.7 \rceil=3$, $\lfloor 2.7 \rfloor=2$ and $\lfloor 4 \rfloor=\lceil 4 \rceil=4$

2006 AIME Problems, 14

A tripod has three legs each of length 5 feet. When the tripod is set up, the angle between any pair of legs is equal to the angle between any other pair, and the top of the tripod is 4 feet from the ground. In setting up the tripod, the lower 1 foot of one leg breaks off. Let $h$ be the height in feet of the top of the tripod from the ground when the broken tripod is set up. Then $h$ can be written in the form $\frac m{\sqrt{n}},$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. Find $\lfloor m+\sqrt{n}\rfloor.$ (The notation $\lfloor x\rfloor$ denotes the greatest integer that is less than or equal to $x$.)

2007 Regional Competition For Advanced Students, 3

Let $ a$ be a positive real number and $ n$ a non-negative integer. Determine $ S\minus{}T$, where $ S\equal{} \sum_{k\equal{}\minus{}2n}^{2n\plus{}1} \frac{(k\minus{}1)^2}{a^{| \lfloor \frac{k}{2} \rfloor |}}$ and $ T\equal{} \sum_{k\equal{}\minus{}2n}^{2n\plus{}1} \frac{k^2}{a^{| \lfloor \frac{k}{2} \rfloor |}}$

1992 Tournament Of Towns, (348) 6

Consider the sequence $a(n)$ defined by the following conditions: $$a(1) = 1\,\,\,\, a(n + 1) = a(n) + [\sqrt{a(n)}] \,\,\, , \,\,\,\, n = 1,2,3,...$$ Prove that the sequence contains an infinite number of perfect squares. (Note: $[x]$ means the integer part of $x$, that is the greatest integer not greater than $x$.) (A Andjans)

2000 Croatia National Olympiad, Problem 3

Let $j$ and $k$ be integers. Prove that the inequality $$\lfloor(j+k)\alpha\rfloor+\lfloor(j+k)\beta\rfloor\ge\lfloor j\alpha\rfloor+\lfloor j\beta\rfloor+\lfloor k(\alpha+\beta)\rfloor$$holds for all real numbers $\alpha,\beta$ if and only if $j=k$.

2014 Saudi Arabia IMO TST, 2

Determine all functions $f:[0,\infty)\rightarrow\mathbb{R}$ such that $f(0)=0$ and \[f(x)=1+5f\left(\left\lfloor{\frac{x}{2}\right\rfloor}\right)-6f\left(\left\lfloor{\frac{x}{4}\right\rfloor}\right)\] for all $x>0$.

2003 Putnam, 3

Show that for each positive integer n, \[n!=\prod_{i=1}^n \; \text{lcm} \; \{1, 2, \ldots, \left\lfloor\frac{n}{i} \right\rfloor\}\] (Here lcm denotes the least common multiple, and $\lfloor x\rfloor$ denotes the greatest integer $\le x$.)

2023 Indonesia MO, 2

Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the following equation holds for every real $x,y$: \[ f(f(x) + y) = \lfloor x + f(f(y)) \rfloor. \] [b]Note:[/b] $\lfloor x \rfloor$ denotes the greatest integer not greater than $x$.

2010 India IMO Training Camp, 6

Let $n\ge 2$ be a given integer. Show that the number of strings of length $n$ consisting of $0'$s and $1'$s such that there are equal number of $00$ and $11$ blocks in each string is equal to \[2\binom{n-2}{\left \lfloor \frac{n-2}{2}\right \rfloor}\]

2016 Peru IMO TST, 14

Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.

2023 USA IMO Team Selection Test, 4

Let $\lfloor \bullet \rfloor$ denote the floor function. For nonnegative integers $a$ and $b$, their [i]bitwise xor[/i], denoted $a \oplus b$, is the unique nonnegative integer such that $$ \left \lfloor \frac{a}{2^k} \right \rfloor+ \left\lfloor\frac{b}{2^k} \right\rfloor - \left\lfloor \frac{a\oplus b}{2^k}\right\rfloor$$ is even for every $k \ge 0$. Find all positive integers $a$ such that for any integers $x>y\ge 0$, we have \[ x\oplus ax \neq y \oplus ay. \] [i]Carl Schildkraut[/i]