Found problems: 1187
2021 China Team Selection Test, 4
Proof that
$$ \sum_{m=1}^n5^{\omega (m)} \le \sum_{k=1}^n\lfloor \frac{n}{k} \rfloor \tau (k)^2 \le \sum_{m=1}^n5^{\Omega (m)} .$$
2004 South East Mathematical Olympiad, 7
A tournament is held among $n$ teams, following such rules:
a) every team plays all others once at home and once away.(i.e. double round-robin schedule)
b) each team may participate in several away games in a week(from Sunday to Saturday).
c) there is no away game arrangement for a team, if it has a home game in the same week.
If the tournament finishes in 4 weeks, determine the maximum value of $n$.
2013 Iran Team Selection Test, 2
Find the maximum number of subsets from $\left \{ 1,...,n \right \}$ such that for any two of them like $A,B$ if $A\subset B$ then $\left | B-A \right |\geq 3$. (Here $\left | X \right |$ is the number of elements of the set $X$.)
1981 USAMO, 5
If $x$ is a positive real number, and $n$ is a positive integer, prove that
\[[ nx] > \frac{[ x]}1 + \frac{[ 2x]}2 +\frac{[ 3x]}3 + \cdots + \frac{[ nx]}n,\]
where $[t]$ denotes the greatest integer less than or equal to $t$. For example, $[ \pi] = 3$ and $\left[\sqrt2\right] = 1$.
2003 Germany Team Selection Test, 3
Let $N$ be a natural number and $x_1, \ldots , x_n$ further natural numbers less than $N$ and such that the least common multiple of any two of these $n$ numbers is greater than $N$. Prove that the sum of the reciprocals of these $n$ numbers is always less than $2$: $\sum^n_{i=1} \frac{1}{x_i} < 2.$
PEN A Problems, 106
Determine the least possible value of the natural number $n$ such that $n!$ ends in exactly $1987$ zeros.
1988 IMO Longlists, 17
If $ n$ runs through all the positive integers, then $ f(n) \equal{} \left \lfloor n \plus{} \sqrt {3n} \plus{} \frac {1}{2} \right \rfloor$ runs through all positive integers skipping the terms of the sequence $ a_n \equal{} \left \lfloor \frac {n^2 \plus{} 2n}{3} \right \rfloor$.
2000 AIME Problems, 7
Given that \[ \frac 1{2!17!}+\frac 1{3!16!}+\frac 1{4!15!}+\frac 1{5!14!}+\frac 1{6!13!}+\frac 1{7!12!}+\frac 1{8!11!}+\frac 1{9!10!}=\frac N{1!18!} \] find the greatest integer that is less than $\frac N{100}.$
2009 AMC 12/AHSME, 21
Ten women sit in $ 10$ seats in a line. All of the $ 10$ get up and then reseat themselves using all $ 10$ seats, each sitting in the seat she was in before or a seat next to the one she occupied before. In how many ways can the women be reseated?
$ \textbf{(A)}\ 89\qquad
\textbf{(B)}\ 90\qquad
\textbf{(C)}\ 120\qquad
\textbf{(D)}\ 2^{10}\qquad
\textbf{(E)}\ 2^2 3^8$
2013 Online Math Open Problems, 23
A set of 10 distinct integers $S$ is chosen. Let $M$ be the number of nonempty subsets of $S$ whose elements have an even sum. What is the minimum possible value of $M$?
[hide="Clarifications"]
[list]
[*] $S$ is the ``set of 10 distinct integers'' from the first sentence.[/list][/hide]
[i]Ray Li[/i]
PEN E Problems, 24
Let $p_{n}$ again denote the $n$th prime number. Show that the infinite series \[\sum^{\infty}_{n=1}\frac{1}{p_{n}}\] diverges.
2010 China Team Selection Test, 2
Given positive integer $n$, find the largest real number $\lambda=\lambda(n)$, such that for any degree $n$ polynomial with complex coefficients $f(x)=a_n x^n+a_{n-1} x^{n-1}+\cdots+a_0$,
and any permutation $x_0,x_1,\cdots,x_n$ of $0,1,\cdots,n$, the following inequality holds $\sum_{k=0}^n|f(x_k)-f(x_{k+1})|\geq \lambda |a_n|$, where $x_{n+1}=x_0$.
2013 India IMO Training Camp, 3
We define an operation $\oplus$ on the set $\{0, 1\}$ by
\[ 0 \oplus 0 = 0 \,, 0 \oplus 1 = 1 \,, 1 \oplus 0 = 1 \,, 1 \oplus 1 = 0 \,.\]
For two natural numbers $a$ and $b$, which are written in base $2$ as $a = (a_1a_2 \ldots a_k)_2$ and $b = (b_1b_2 \ldots b_k)_2$ (possibly with leading 0's), we define $a \oplus b = c$ where $c$ written in base $2$ is $(c_1c_2 \ldots c_k)_2$ with $c_i = a_i \oplus b_i$, for $1 \le i \le k$. For example, we have $7 \oplus 3 = 4$ since $ 7 = (111)_2$ and $3 = (011)_2$.
For a natural number $n$, let $f(n) = n \oplus \left[ n/2 \right]$, where $\left[ x \right]$ denotes the largest integer less than or equal to $x$. Prove that $f$ is a bijection on the set of natural numbers.
2006 Iran MO (3rd Round), 6
The National Foundation of Happiness (NFoH) wants to estimate the happiness of people of country. NFoH selected $n$ random persons, and on every morning asked from each of them whether she is happy or not. On any two distinct days, exactly half of the persons gave the same answer. Show that after $k$ days, there were at most $n-\frac{n}{k}$ persons whose “yes” answers equals their “no” answers.
2008 Germany Team Selection Test, 1
Show that there is a digit unequal to 2 in the decimal represesentation of $ \sqrt [3]{3}$ between the $ 1000000$-th und $ 3141592$-th position after decimal point.
1989 AMC 12/AHSME, 20
Let $x$ be a real number selected uniformly at random between 100 and 200. If $\lfloor {\sqrt{x}} \rfloor = 12$, find the probability that $\lfloor {\sqrt{100x}} \rfloor = 120$. ($\lfloor {v} \rfloor$ means the greatest integer less than or equal to $v$.)
$\text{(A)} \ \frac{2}{25} \qquad \text{(B)} \ \frac{241}{2500} \qquad \text{(C)} \ \frac{1}{10} \qquad \text{(D)} \ \frac{96}{625} \qquad \text{(E)} \ 1$
2018 Pan-African Shortlist, A2
Find a non-zero polynomial $f(x, y)$ such that $f(\lfloor 3t \rfloor, \lfloor 5t \rfloor) = 0$ for all real numbers $t$.
2022 Germany Team Selection Test, 1
Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?
II Soros Olympiad 1995 - 96 (Russia), 11.3
Solve the equation $$[2 \sin x] =2\cos \left(3x+\frac{\pi}{4} \right)$$
($[x]$ is the integer part of $x$, $[x]$ is equal to the largest integer not exceeding $x$. For example, $[3,33] = 3$, $[2] = 2$, $[- 3.01] = -4$).
2015 IMO Shortlist, N1
Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.
2018 MOAA, 7
For a positive integer $k$, define the $k$-[i]pop[/i] of a positive integer $n$ as the infinite sequence of integers $a_1, a_2, ...$ such that $a_1 = n$ and $$a_{i+1}= \left\lfloor \frac{a_i}{k} \right\rfloor , i = 1, 2, ..$$
where $ \lfloor x\rfloor $ denotes the greatest integer less than or equal to $x$. Furthermore, define a positive integer $m$ to be $k$-[i]pop avoiding[/i] if $k$ does not divide any nonzero term in the $k$-pop of $m$. For example, $14$ is 3-pop avoiding because $3$ does not divide any nonzero term in the $3$-pop of $14$, which is $14, 4, 1, 0, 0, ....$ Suppose that the number of positive integers less than $13^{2018}$ which are $13$-pop avoiding is equal to N. What is the remainder when $N$ is divided by $1000$?
PEN S Problems, 37
Let $n$ and $k$ are integers with $n>0$. Prove that \[-\frac{1}{2n}\sum^{n-1}_{m=1}\cot \frac{\pi m}{n}\sin \frac{2\pi km}{n}= \begin{cases}\tfrac{k}{n}-\lfloor\tfrac{k}{n}\rfloor-\frac12 & \text{if }k|n \\ 0 & \text{otherwise}\end{cases}.\]
2020 AMC 10, 24
How many positive integers $n$ satisfy$$\dfrac{n+1000}{70} = \lfloor \sqrt{n} \rfloor?$$(Recall that $\lfloor x\rfloor$ is the greatest integer not exceeding $x$.)
$\textbf{(A) } 2 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 6 \qquad\textbf{(D) } 30 \qquad\textbf{(E) } 32$
2016 Costa Rica - Final Round, N1
Find all $x \in R$ such that $$ x - \left[ \frac{x}{2016} \right]= 2016$$, where $[k]$ represents the largest smallest integer or equal to $k$.
2012 Online Math Open Problems, 26
Find the smallest positive integer $k$ such that
\[\binom{x+kb}{12} \equiv \binom{x}{12} \pmod{b}\]
for all positive integers $b$ and $x$. ([i]Note:[/i] For integers $a,b,c$ we say $a \equiv b \pmod c$ if and only if $a-b$ is divisible by $c$.)
[i]Alex Zhu.[/i]
[hide="Clarifications"][list=1][*]${{y}\choose{12}} = \frac{y(y-1)\cdots(y-11)}{12!}$ for all integers $y$. In particular, ${{y}\choose{12}} = 0$ for $y=1,2,\ldots,11$.[/list][/hide]