This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

1997 USAMO, 6

Suppose the sequence of nonnegative integers $a_1, a_2, \ldots, a_{1997}$ satisfies \[ a_i + a_j \leq a_{i+j} \leq a_i + a_j + 1 \] for all $i,j \geq 1$ with $i + j \leq 1997$. Show that there exists a real number $x$ such that $a_n = \lfloor nx \rfloor$ (the greatest integer $\leq nx$) for all $1 \leq n \leq 1997$.

2000 JBMO ShortLists, 3

Find the greatest positive integer $x$ such that $23^{6+x}$ divides $2000!$

2006 Costa Rica - Final Round, 2

Let $n$ be a positive integer, and let $p$ be a prime, such that $n>p$. Prove that : \[ \displaystyle \binom np \equiv \left\lfloor\frac{n}{p}\right\rfloor \ \pmod p. \]

PEN A Problems, 26

Let $m$ and $n$ be arbitrary non-negative integers. Prove that \[\frac{(2m)!(2n)!}{m! n!(m+n)!}\] is an integer.

2012 Romania Team Selection Test, 1

Prove that for any positive integer $n\geq 2$ we have that \[\sum_{k=2}^n \lfloor \sqrt[k]{n}\rfloor=\sum_{k=2}^n\lfloor\log_{k}n\rfloor.\]

1996 Putnam, 5

Let $p$ be a prime greater than $3$. Prove that \[ p^2\Big| \sum_{i=1}^{\left\lfloor\frac{2p}{3}\right\rfloor}\dbinom{p}{i}. \]

2007 Germany Team Selection Test, 1

We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by \[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right), \] where $\lfloor x\rfloor$ denotes the integer part of $x$. [b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often. [b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often. [i]Proposed by Johan Meyer, South Africa[/i]

2007 Germany Team Selection Test, 1

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula \[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0; \]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large. [i]Proposed by Harmel Nestra, Estionia[/i]

2012 India PRMO, 18

What is the sum of the squares of the roots of the equation $x^2 -7 \lfloor x\rfloor +5=0$ ?

2006 South africa National Olympiad, 6

Consider the function $f$ defined by \[f(n)=\frac{1}{n}\left (\left \lfloor\frac{n}{1}\right \rfloor+\left \lfloor\frac{n}{2}\right \rfloor+\cdots+\left \lfloor\frac{n}{n}\right \rfloor \right )\] for all positive integers $n$. (Here $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x$.) Prove that (a) $f(n+1)>f(n)$ for infinitely many $n$. (b) $f(n+1)<f(n)$ for infinitely many $n$.

2022 Junior Balkan Team Selection Tests - Moldova, 10

Solve in the set $R$ the equation $$2 \cdot [x] \cdot \{x\} = x^2 - \frac32 \cdot x - \frac{11}{16}$$ where $[x]$ and $\{x\}$ represent the integer part and the fractional part of the real number $x$, respectively.

1971 IMO Longlists, 53

Denote by $x_n(p)$ the multiplicity of the prime $p$ in the canonical representation of the number $n!$ as a product of primes. Prove that $\frac{x_n(p)}{n}<\frac{1}{p-1}$ and $\lim_{n \to \infty}\frac{x_n(p)}{n}=\frac{1}{p-1}$.

2012 China Team Selection Test, 2

Prove that there exists a positive real number $C$ with the following property: for any integer $n\ge 2$ and any subset $X$ of the set $\{1,2,\ldots,n\}$ such that $|X|\ge 2$, there exist $x,y,z,w \in X$(not necessarily distinct) such that \[0<|xy-zw|<C\alpha ^{-4}\] where $\alpha =\frac{|X|}{n}$.

1955 Moscow Mathematical Olympiad, 311

Find all numbers $a$ such that (1) all numbers $[a], [2a], . . . , [Na]$ are distinct and (2) all numbers $\left[ \frac{1}{a}\right], \left[ \frac{2}{a}\right], ..., \left[ \frac{M}{a}\right]$ are distinct.

2022 Thailand TST, 1

Which positive integers $n$ make the equation \[\sum_{i=1}^n \sum_{j=1}^n \left\lfloor \frac{ij}{n+1} \right\rfloor=\frac{n^2(n-1)}{4}\] true?

2012 NIMO Problems, 6

A square is called [i]proper[/i] if its sides are parallel to the coordinate axes. Point $P$ is randomly selected inside a proper square $S$ with side length 2012. Denote by $T$ the largest proper square that lies within $S$ and has $P$ on its perimeter, and denote by $a$ the expected value of the side length of $T$. Compute $\lfloor a \rfloor$, the greatest integer less than or equal to $a$. [i]Proposed by Lewis Chen[/i]

2022 IOQM India, 8

For any real number $t$, let $\lfloor t \rfloor$ denote the largest integer $\le t$. Suppose that $N$ is the greatest integer such that $$\left \lfloor \sqrt{\left \lfloor \sqrt{\left \lfloor \sqrt{N} \right \rfloor}\right \rfloor}\right \rfloor = 4$$Find the sum of digits of $N$.

2010 Spain Mathematical Olympiad, 2

Let $\mathbb{N}_0$ and $\mathbb{Z}$ be the set of all non-negative integers and the set of all integers, respectively. Let $f:\mathbb{N}_0\rightarrow\mathbb{Z}$ be a function defined as \[f(n)=-f\left(\left\lfloor\frac{n}{3}\right\rfloor \right)-3\left\{\frac{n}{3}\right\} \] where $\lfloor x \rfloor$ is the greatest integer smaller than or equal to $x$ and $\{ x\}=x-\lfloor x \rfloor$. Find the smallest integer $n$ such that $f(n)=2010$.

2012 Portugal MO, 1

Find the number of positive integers $n$ such that $1\leq n\leq 1000$ and $n$ is divisible by $\lfloor \sqrt[3]{n} \rfloor$.

1997 AIME Problems, 9

Given a nonnegative real number $x,$ let $\langle x\rangle$ denote the fractional part of $x;$ that is, $\langle x\rangle=x-\lfloor x\rfloor,$ where $\lfloor x\rfloor$ denotes the greatest integer less than or equal to $x.$ Suppose that $a$ is positive, $\langle a^{-1}\rangle=\langle a^2\rangle,$ and $2<a^2<3.$ Find the value of $a^{12}-144a^{-1}.$

2011 AMC 12/AHSME, 25

For every $m$ and $k$ integers with $k$ odd, denote by $[\frac{m}{k}]$ the integer closest to $\frac{m}{k}$. For every odd integer $k$, let $P\left(k\right)$ be the probability that \[ [\frac{n}{k}] + [\frac{100-n}{k}] = [\frac{100}{k}] \] for an integer $n$ randomly chosen from the interval $1 \le n \le 99!$. What is the minimum possible value of $P\left(k\right)$ over the odd integers $k$ in the interval $1 \le k \le 99$? $ \textbf{(A)}\ \frac{1}{2} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{44}{87} \qquad \textbf{(D)}\ \frac{34}{67} \qquad \textbf{(E)}\ \frac{7}{13} $

2025 District Olympiad, P2

Solve in $\mathbb{R}$ the equation $$\frac{1}{x}+\frac{1}{\lfloor x\rfloor} + \frac{1}{\{x\}} = 0.$$ [i]Mathematical Gazette[/i]

2014 Junior Balkan Team Selection Tests - Moldova, 5

Show that for any natural number $n$, the number $A = [\frac{n + 3}{4}] + [ \frac{n + 5}{4} ] + [\frac{n}{2} ] +n^2 + 3n + 3$ is a perfect square. ($[x]$ denotes the integer part of the real number x.)

2002 China Girls Math Olympiad, 5

There are $ n \geq 2$ permutations $ P_1, P_2, \ldots, P_n$ each being an arbitrary permutation of $ \{1,\ldots,n\}.$ Prove that \[ \sum^{n\minus{}1}_{i\equal{}1} \frac{1}{P_i \plus{} P_{i\plus{}1}} > \frac{n\minus{}1}{n\plus{}2}.\]

2004 Harvard-MIT Mathematics Tournament, 3

Compute \[ \left\lfloor \dfrac {2005^3}{2003 \cdot 2004} - \dfrac {2003^3}{2004 \cdot 2005} \right\rfloor \]