Found problems: 1187
2002 Italy TST, 2
On a soccer tournament with $n\ge 3$ teams taking part, several matches are played in such a way that among any three teams, some two play a match.
$(a)$ If $n=7$, find the smallest number of matches that must be played.
$(b)$ Find the smallest number of matches in terms of $n$.
1978 Germany Team Selection Test, 3
Let $n$ be an integer greater than $1$. Define
\[x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i = 1, 2, \ldots\ ,\]
where $[z]$ denotes the largest integer less than or equal to $z$. Prove that
\[ \min \{x_1, x_2, \ldots, x_n \} =[ \sqrt n ]\]
1985 IMO Longlists, 11
Let $a$ and $ b$ be integers and $n$ a positive integer. Prove that
\[\frac{b^{n-1}a(a + b)(a + 2b) \cdots (a + (n - 1)b)}{n!}\]
is an integer.
2013 China Western Mathematical Olympiad, 4
There are $n$ coins in a row, $n\geq 2$. If one of the coins is head, select an odd number of consecutive coins (or even 1 coin) with the one in head on the leftmost, and then flip all the selected coins upside down simultaneously. This is a $move$. No move is allowed if all $n$ coins are tails.
Suppose $m-1$ coins are heads at the initial stage, determine if there is a way to carry out $ \lfloor\frac {2^m}{3}\rfloor $ moves
2004 APMO, 4
For a real number $x$, let $\lfloor x\rfloor$ stand for the largest integer that is less than or equal to $x$. Prove that
\[ \left\lfloor{(n-1)!\over n(n+1)}\right\rfloor \]
is even for every positive integer $n$.
1982 All Soviet Union Mathematical Olympiad, 346
Prove that the following inequality holds for all real $a$ and natural $n$: $$|a| \cdot |a-1|\cdot |a-2|\cdot ...\cdot |a-n| \ge \frac{n!F(a)}{2n}$$ $F(a)$ is the distance from $a$ to the closest integer.
1993 Austrian-Polish Competition, 7
The sequence $(a_n)$ is defined by $a_0 = 0$ and $a_{n+1} = [\sqrt[3]{a_n +n}]^3$ for $n \ge 0$.
(a) Find $a_n$ in terms of $n$.
(b) Find all $n$ for which $a_n = n$.
2012 ELMO Problems, 4
Let $a_0,b_0$ be positive integers, and define $a_{i+1}=a_i+\lfloor\sqrt{b_i}\rfloor$ and $b_{i+1}=b_i+\lfloor\sqrt{a_i}\rfloor$ for all $i\ge0$. Show that there exists a positive integer $n$ such that $a_n=b_n$.
[i]David Yang.[/i]
2009 USAMTS Problems, 3
I give you a deck of $n$ cards numbered $1$ through $n$. On each turn, you take the top card of the deck and place it anywhere you choose in the deck. You must arrange the cards in numerical order, with card $1$ on top and card $n$ on the bottom. If I place the deck in a random order before giving it to you, and you know the initial order of the cards, what is the expected value of the minimum number of turns you need to arrange the deck in order?
1989 Tournament Of Towns, (227) 1
Find the number of solutions in positive integers of the equation $\lfloor \frac{x}{2} \rfloor = \lfloor \frac{x}{11} \rfloor +1$
where $\lfloor A\rfloor$ denotes the integer part of the number $A$, e.g. $\lfloor 2.031\rfloor = 2$, $\lfloor 2\rfloor = 2$, etc.
KoMaL A Problems 2024/2025, A. 903
Let the irrational number
\[\alpha =1-\cfrac{1}{2a_1-\cfrac{1}{2a_2-\cfrac{1}{2a_3-\cdots}}}\]
where coefficients $a_1, a_2, \ldots$ are positive integers, infinitely many of which are greater than $1$. Prove that for every positive integer $N$ at least half of the numbers $\lfloor \alpha\rfloor, \lfloor 2\alpha\rfloor, \ldots, \lfloor N\alpha\rfloor$ are even.
[i]Proposed by Géza Kós, Budapest[/i]
2014 ELMO Shortlist, 4
Let $r$ and $b$ be positive integers. The game of [i]Monis[/i], a variant of Tetris, consists of a single column of red and blue blocks. If two blocks of the same color ever touch each other, they both vanish immediately. A red block falls onto the top of the column exactly once every $r$ years, while a blue block falls exactly once every $b$ years.
(a) Suppose that $r$ and $b$ are odd, and moreover the cycles are offset in such a way that no two blocks ever fall at exactly the same time. Consider a period of $rb$ years in which the column is initially empty. Determine, in terms of $r$ and $b$, the number of blocks in the column at the end.
(b) Now suppose $r$ and $b$ are relatively prime and $r+b$ is odd. At time $t=0$, the column is initially empty. Suppose a red block falls at times $t = r, 2r, \dots, (b-1)r$ years, while a blue block falls at times $t = b, 2b, \dots, (r-1)b$ years. Prove that at time $t=rb$, the number of blocks in the column is $\left\lvert 1+2(r-1)(b+r)-8S \right\rvert$, where \[ S = \left\lfloor \frac{2r}{r+b} \right\rfloor
+ \left\lfloor \frac{4r}{r+b} \right\rfloor
+ ...
+ \left\lfloor \frac{(r+b-1)r}{r+b} \right\rfloor
. \]
[i]Proposed by Sammy Luo[/i]
2004 South africa National Olympiad, 3
Find all real numbers $x$ such that $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor=88$. The notation $\lfloor x\rfloor$ means the greatest integer less than or equal to $x$.
1999 Italy TST, 4
Let $X$ be an $n$-element set and let $A_1,\ldots ,A_m$ be subsets of $X$ such that
i) $|A_i|=3$ for each $i=1,\ldots ,m$.
ii) $|A_i\cap A_j|\le 1$ for any two distinct indices $i,j$.
Show that there exists a subset of $X$ with at least $\lfloor\sqrt{2n}\rfloor$ elements which does not contain any of the $A_i$’s.
2010 China Team Selection Test, 3
Let $n_1,n_2, \cdots, n_{26}$ be pairwise distinct positive integers satisfying
(1) for each $n_i$, its digits belong to the set $\{1,2\}$;
(2) for each $i,j$, $n_i$ can't be obtained from $n_j$ by adding some digits on the right.
Find the smallest possible value of $\sum_{i=1}^{26} S(n_i)$, where $S(m)$ denotes the sum of all digits of a positive integer $m$.
2006 Romania Team Selection Test, 3
Let $x_1=1$, $x_2$, $x_3$, $\ldots$ be a sequence of real numbers such that for all $n\geq 1$ we have \[ x_{n+1} = x_n + \frac 1{2x_n} . \] Prove that \[ \lfloor 25 x_{625} \rfloor = 625 . \]
1998 USAMO, 6
Let $n \geq 5$ be an integer. Find the largest integer $k$ (as a function of $n$) such that there exists a convex $n$-gon $A_{1}A_{2}\dots A_{n}$ for which exactly $k$ of the quadrilaterals $A_{i}A_{i+1}A_{i+2}A_{i+3}$ have an inscribed circle. (Here $A_{n+j} = A_{j}$.)
2012 IberoAmerican, 3
Show that, for every positive integer $n$, there exist $n$ consecutive positive integers such that none is divisible by the sum of its digits.
(Alternative Formulation: Call a number good if it's not divisible by the sum of its digits. Show that for every positive integer $n$ there are $n$ consecutive good numbers.)
2005 China Team Selection Test, 1
Find all positive integers $m$ and $n$ such that the inequality:
\[ [ (m+n) \alpha ] + [ (m+n) \beta ] \geq [ m \alpha ] + [n \beta] + [ n(\alpha+\beta)] \]
is true for any real numbers $\alpha$ and $\beta$. Here $[x]$ denote the largest integer no larger than real number $x$.
PEN I Problems, 15
Find the total number of different integer values the function \[f(x) = \lfloor x\rfloor+\lfloor 2x\rfloor+\left\lfloor \frac{5x}{3}\right\rfloor+\lfloor 3x\rfloor+\lfloor 4x\rfloor\] takes for real numbers $x$ with $0 \leq x \leq 100$.
PEN M Problems, 26
Let $p$ be an odd prime $p$ such that $2h \neq 1 \; \pmod{p}$ for all $h \in \mathbb{N}$ with $h< p-1$, and let $a$ be an even integer with $a \in] \tfrac{p}{2}, p [$. The sequence $\{a_n\}_{n \ge 0}$ is defined by $a_{0}=a$, $a_{n+1}=p -b_{n}$ \; $(n \ge 0)$, where $b_{n}$ is the greatest odd divisor of $a_n$. Show that the sequence $\{a_n\}_{n \ge 0}$ is periodic and find its minimal (positive) period.
MOAA Team Rounds, 2018.7
For a positive integer $k$, define the $k$-[i]pop[/i] of a positive integer $n$ as the infinite sequence of integers $a_1, a_2, ...$ such that $a_1 = n$ and $$a_{i+1}= \left\lfloor \frac{a_i}{k} \right\rfloor , i = 1, 2, ..$$
where $ \lfloor x\rfloor $ denotes the greatest integer less than or equal to $x$. Furthermore, define a positive integer $m$ to be $k$-[i]pop avoiding[/i] if $k$ does not divide any nonzero term in the $k$-pop of $m$. For example, $14$ is 3-pop avoiding because $3$ does not divide any nonzero term in the $3$-pop of $14$, which is $14, 4, 1, 0, 0, ....$ Suppose that the number of positive integers less than $13^{2018}$ which are $13$-pop avoiding is equal to N. What is the remainder when $N$ is divided by $1000$?
2014 JBMO Shortlist, 3
For a positive integer $n$, two payers $A$ and $B$ play the following game: Given a pile of $s$ stones, the players take turn alternatively with $A$ going first. On each turn the player is allowed to take either one stone, or a prime number of stones, or a positive multiple of $n$ stones. The winner is the one who takes the last stone. Assuming both $A$ and $B$ play perfectly, for how many values of $s$ the player $A$ cannot win?
2005 China Team Selection Test, 3
Let $a_1,a_2 \dots a_n$ and $x_1, x_2 \dots x_n$ be integers and $r\geq 2$ be an integer. It is known that \[\sum_{j=0}^{n} a_j x_j^k =0 \qquad \text{for} \quad k=1,2, \dots r.\]
Prove that
\[\sum_{j=0}^{n} a_j x_j^m \equiv 0 \pmod m, \qquad \text{for all}\quad m \in \{ r+1, r+2, \cdots, 2r+1 \}.\]
1996 Korea National Olympiad, 3
Let $a=\lfloor \sqrt{n} \rfloor$ for given positive integer $n.$
Express the summation $\sum_{k=1}^{n}\lfloor \sqrt{k} \rfloor$ in terms of $n$ and $a.$