This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 81

1986 Balkan MO, 4

Let $ABC$ a triangle and $P$ a point such that the triangles $PAB, PBC, PCA$ have the same area and the same perimeter. Prove that if: a) $P$ is in the interior of the triangle $ABC$ then $ABC$ is equilateral. b) $P$ is in the exterior of the triangle $ABC$ then $ABC$ is right angled triangle.

1956 AMC 12/AHSME, 29

The points of intersection of $ xy \equal{} 12$ and $ x^2 \plus{} y^2 \equal{} 25$ are joined in succession. The resulting figure is: $ \textbf{(A)}\ \text{a straight line} \qquad\textbf{(B)}\ \text{an equilateral triangle} \qquad\textbf{(C)}\ \text{a parallelogram}$ $ \textbf{(D)}\ \text{a rectangle} \qquad\textbf{(E)}\ \text{a square}$

2003 Mediterranean Mathematics Olympiad, 2

In a triangle $ABC$ with $BC = CA + \frac 12 AB$, point $P$ is given on side $AB$ such that $BP : PA = 1 : 3$. Prove that $\angle CAP = 2 \angle CPA.$

2006 Romania Team Selection Test, 1

The circle of center $I$ is inscribed in the convex quadrilateral $ABCD$. Let $M$ and $N$ be points on the segments $AI$ and $CI$, respectively, such that $\angle MBN = \frac 12 \angle ABC$. Prove that $\angle MDN = \frac 12 \angle ADC$.

2007 Vietnam National Olympiad, 3

Let B,C be fixed points and A be roving point. Let H, G be orthecentre and centroid of triagle ABC. Known midpoint of HG lies on BC, find locus of A

2024 HMIC, 5

Let $ABC$ be an acute, scalene triangle with circumcenter $O$ and symmedian point $K$. Let $X$ be the point on the circumcircle of triangle $BOC$ such that $\angle AXO = 90^\circ$. Assume that $X\neq K$. The hyperbola passing through $B$, $C$, $O$, $K$, and $X$ intersects the circumcircle of triangle $ABC$ at points $U$ and $V$, distinct from $B$ and $C$. Prove that $UV$ is the perpendicular bisector of $AX$. [i]The symmedian point of triangle $ABC$ is the intersection of the reflections of $B$-median and $C$-median across the angle bisectors of $\angle ABC$ and $\angle ACB$, respectively.[/i] [i]Pitchayut Saengrungkongka[/i]

1990 Vietnam National Olympiad, 1

A triangle $ ABC$ is given in the plane. Let $ M$ be a point inside the triangle and $ A'$, $ B'$, $ C'$ be its projections on the sides $ BC$, $ CA$, $ AB$, respectively. Find the locus of $ M$ for which $ MA \cdot MA' \equal{} MB \cdot MB' \equal{} MC \cdot MC'$.

2013 Today's Calculation Of Integral, 870

Consider the ellipse $E: 3x^2+y^2=3$ and the hyperbola $H: xy=\frac 34.$ (1) Find all points of intersection of $E$ and $H$. (2) Find the area of the region expressed by the system of inequality \[\left\{ \begin{array}{ll} 3x^2+y^2\leq 3 &\quad \\ xy\geq \frac 34 , &\quad \end{array} \right.\]

1997 National High School Mathematics League, 8

Tags: conic , hyperbola
Line $l$ that passes right focal point of hyperbola $x^2-\frac{y^2}{2}=1$ intersects the hyperbola at $A,B$. The number of line $l$ that $|AB|=\lambda$ is 3, then $\lambda=$________.

2006 Kyiv Mathematical Festival, 1

See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url] Triangle $ABC$ and straight line $l$ are given at the plane. Construct using a compass and a ruler the straightline which is parallel to $l$ and bisects the area of triangle $ABC.$

Today's calculation of integrals, 891

Given a triangle $OAB$ with the vetices $O(0,\ 0,\ 0),\ A(1,\ 0,\ 0),\ B(1,\ 1,\ 0)$ in the $xyz$ space. Let $V$ be the cone obtained by rotating the triangle around the $x$-axis. Find the volume of the solid obtained by rotating the cone $V$ around the $y$-axis.

2011 China Girls Math Olympiad, 3

The positive reals $a,b,c,d$ satisfy $abcd=1$. Prove that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{9}{{a + b + c + d}} \geqslant \frac{{25}}{4}$.

1969 IMO Longlists, 2

$(BEL 2) (a)$ Find the equations of regular hyperbolas passing through the points $A(\alpha, 0), B(\beta, 0),$ and $C(0, \gamma).$ $(b)$ Prove that all such hyperbolas pass through the orthocenter $H$ of the triangle $ABC.$ $(c)$ Find the locus of the centers of these hyperbolas. $(d)$ Check whether this locus coincides with the nine-point circle of the triangle $ABC.$

1995 VJIMC, Problem 1

Tags: conic , hyperbola
Prove that the systems of hyperbolas \begin{align*}x^2-y^2&=a\\xy&=b\end{align*}are orthogonal.

2018 Belarusian National Olympiad, 11.5

Tags: conic , hyperbola , algebra
The circle $S_1$ intersects the hyperbola $y=\frac1x$ at four points $A$, $B$, $C$, and $D$, and the other circle $S_2$ intersects the same hyperbola at four points $A$, $B$, $F$, and $G$. It's known that the radii of circles $S_1$ and $S_2$ are equal. Prove that the points $C$, $D$, $F$, and $G$ are the vertices of the parallelogram.

2009 Today's Calculation Of Integral, 494

Suppose the curve $ C: y \equal{} ax^3 \plus{} 4x\ (a\neq 0)$ has a common tangent line at the point $ P$ with the hyperbola $ xy \equal{} 1$ in the first quadrant. (1) Find the value of $ a$ and the coordinate of the point $ P$. (2) Find the volume formed by the revolution of the solid of the figure bounded by the line segment $ OP$ and the curve $ C$ about the line $ OP$. [color=green][Edited.][/color]

2022 IMO Shortlist, G6

Let $ABC$ be an acute triangle with altitude $\overline{AH}$, and let $P$ be a variable point such that the angle bisectors $k$ and $\ell$ of $\angle PBC$ and $\angle PCB$, respectively, meet on $\overline{AH}$. Let $k$ meet $\overline{AC}$ at $E$, $\ell$ meet $\overline{AB}$ at $F$, and $\overline{EF}$ meet $\overline{AH}$ at $Q$. Prove that as $P$ varies, line $PQ$ passes through a fixed point.

1990 National High School Mathematics League, 3

Tags: hyperbola , conic
Left focal point and right focal point of a hyperbola are $F_1,F_2$, left focal point and right focal point of a hyperbola are $M,N$. If $P$ is a point on the hyperbola, then the tangent point of inscribed circle of $\triangle PF_1F_2$ on $F_1F_2$ is $\text{(A)}$a point on segment $MN$ $\text{(B)}$a point on segment $F_1M$ or $F_2N$ $\text{(C)}$point $M$ or $N$ $\text{(D)}$not sure

1991 AMC 12/AHSME, 18

If $S$ is the set of points $z$ in the complex plane such that $(3+4i)z$ is a real number, then $S$ is a $ \textbf{(A)}\text{ right triangle}\qquad\textbf{(B)}\text{ circle}\qquad\textbf{(C)}\text{ hyperbola}\qquad\textbf{(D)}\text{ line}\qquad\textbf{(E)}\text{ parabola} $

2006 Stanford Mathematics Tournament, 13

A ray is drawn from the origin tangent to the graph of the upper part of the hyperbola $y^2=x^2-x+1$ in the first quadrant. This ray makes an angle of $\theta$ with the positive $x$-axis. Compute $\cos\theta$.

2016 Belarus Team Selection Test, 3

Point $A,B$ are marked on the right branch of the hyperbola $y=\frac{1}{x},x>0$. The straight line $l$ passing through the origin $O$ is perpendicular to $AB$ and meets $AB$ and given branch of the hyperbola at points $D$ and $C$ respectively. The circle through $A,B,C$ meets $l$ at $F$. Find $OD:CF$

2019 Belarusian National Olympiad, 11.1

[b]a)[/b] Find all real numbers $a$ such that the parabola $y=x^2-a$ and the hyperbola $y=1/x$ intersect each other in three different points. [b]b)[/b] Find the locus of centers of circumcircles of such triples of intersection points when $a$ takes all possible values. [i](I. Gorodnin)[/i]

1984 AMC 12/AHSME, 22

Let $a$ and $c$ be fixed positive numbers. For each real number $t$ let $(x_t, y_t)$ be the vertex of the parabola $y = ax^2+bx+c$. If the set of vertices $(x_t, y_t)$ for all real values of $t$ is graphed in the plane, the graph is A. a straight line B. a parabola C. part, but not all, of a parabola D. one branch of a hyperbola E. None of these

PEN C Problems, 5

Let $p$ be an odd prime and let $Z_{p}$ denote (the field of) integers modulo $p$. How many elements are in the set \[\{x^{2}: x \in Z_{p}\}\cap \{y^{2}+1: y \in Z_{p}\}?\]

1987 IberoAmerican, 2

In a triangle $ABC$, $M$ and $N$ are the respective midpoints of the sides $AC$ and $AB$, and $P$ is the point of intersection of $BM$ and $CN$. Prove that, if it is possible to inscribe a circle in the quadrilateral $AMPN$, then the triangle $ABC$ is isosceles.