This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2022 Thailand TSTST, 3

Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.) [i]Proposed by Hong Kong[/i]

1997 Romania Team Selection Test, 4

Let $p,q,r$ be distinct prime numbers and let \[A=\{p^aq^br^c\mid 0\le a,b,c\le 5\} \] Find the least $n\in\mathbb{N}$ such that for any $B\subset A$ where $|B|=n$, has elements $x$ and $y$ such that $x$ divides $y$. [i]Ioan Tomescu[/i]

2002 Vietnam Team Selection Test, 2

On a blackboard a positive integer $n_0$ is written. Two players, $A$ and $B$ are playing a game, which respects the following rules: $-$ acting alternatively per turn, each player deletes the number written on the blackboard $n_k$ and writes instead one number denoted with $n_{k+1}$ from the set $\left\{n_k-1, \dsp \left\lfloor\frac {n_k}3\right\rfloor\right\}$; $-$ player $A$ starts first deleting $n_0$ and replacing it with $n_1\in\left\{n_0-1, \dsp \left\lfloor\frac {n_0}3\right\rfloor\right\}$; $-$ the game ends when the number on the table is 0 - and the player who wrote it is the winner. Find which player has a winning strategy in each of the following cases: a) $n_0=120$; b) $n_0=\dsp \frac {3^{2002}-1}2$; c) $n_0=\dsp \frac{3^{2002}+1}2$.

2009 Bosnia Herzegovina Team Selection Test, 3

Let $n$ be a positive integer and $x$ positive real number such that none of numbers $x,2x,\dots,nx$ and none of $\frac{1}{x},\frac{2}{x},\dots,\frac{\left\lfloor nx\right\rfloor }{x}$ is an integer. Prove that \[ \left\lfloor x\right\rfloor +\left\lfloor 2x\right\rfloor +\dots+\left\lfloor nx\right\rfloor +\left\lfloor \frac{1}{x}\right\rfloor +\left\lfloor \frac{2}{x}\right\rfloor +\dots+\left\lfloor \frac{\left\lfloor nx\right\rfloor }{x}\right\rfloor =n\left\lfloor nx\right\rfloor \]

2004 China National Olympiad, 2

Let $c$ be a positive integer. Consider the sequence $x_1,x_2,\ldots$ which satisfies $x_1=c$ and, for $n\ge 2$, \[x_n=x_{n-1}+\left\lfloor\frac{2x_{n-1}-(n+2)}{n}\right\rfloor+1\] where $\lfloor x\rfloor$ denotes the largest integer not greater than $x$. Determine an expression for $x_n$ in terms of $n$ and $c$. [i]Huang Yumin[/i]

2011 All-Russian Olympiad, 1

For some 2011 natural numbers, all the $\frac{2010\cdot 2011}{2}$ possible sums were written out on a board. Could it have happened that exactly one third of the written numbers were divisible by three and also exactly one third of them give a remainder of one when divided by three?

2000 Spain Mathematical Olympiad, 1

Find the largest integer $N$ satisfying the following two conditions: [b](i)[/b] $\left[ \frac N3 \right]$ consists of three equal digits; [b](ii)[/b] $\left[ \frac N3 \right] = 1 + 2 + 3 +\cdots + n$ for some positive integer $n.$

2001 All-Russian Olympiad, 1

The integers from $1$ to $999999$ are partitioned into two groups: the first group consists of those integers for which the closest perfect square is odd, whereas the second group consists of those for which the closest perfect square is even. In which group is the sum of the elements greater?

2014 NIMO Problems, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2008 Harvard-MIT Mathematics Tournament, 10

Determine the number of $ 8$-tuples of nonnegative integers $ (a_1,a_2,a_3,a_4,b_1,b_2,b_3,b_4)$ satisfying $ 0\le a_k\le k$, for each $ k \equal{} 1,2,3,4$, and $ a_1 \plus{} a_2 \plus{} a_3 \plus{} a_4 \plus{} 2b_1 \plus{} 3b_2 \plus{} 4b_3 \plus{} 5b_4 \equal{} 19$.

1999 Baltic Way, 6

What is the least number of moves it takes a knight to get from one corner of an $n\times n$ chessboard, where $n\ge 4$, to the diagonally opposite corner?

2007 Mathematics for Its Sake, 1

Prove that the parity of each term of the sequence $ \left( \left\lfloor \left( \lfloor \sqrt q \rfloor +\sqrt{q} \right)^n \right\rfloor \right)_{n\ge 1} $ is opposite to the parity of its index, where $ q $ is a squarefree natural number.

2010 Tournament Of Towns, 3

At a circular track, $10$ cyclists started from some point at the same time in the same direction with different constant speeds. If any two cyclists are at some point at the same time again, we say that they meet. No three or more of them have met at the same time. Prove that by the time every two cyclists have met at least once, each cyclist has had at least $25$ meetings.

2010 All-Russian Olympiad, 4

Given is a natural number $n \geq 3$. What is the smallest possible value of $k$ if the following statements are true? For every $n$ points $ A_i = (x_i, y_i) $ on a plane, where no three points are collinear, and for any real numbers $ c_i$ ($1 \le i \le n$) there exists such polynomial $P(x, y)$, the degree of which is no more than $k$, where $ P(x_i, y_i) = c_i $ for every $i = 1, \dots, n$. (The degree of a nonzero monomial $ a_{i,j} x^{i}y^{j} $ is $i+j$, while the degree of polynomial $P(x, y)$ is the greatest degree of the degrees of its monomials.)

2001 AIME Problems, 2

Each of the 2001 students at a high school studies either Spanish or French, and some study both. The number who study Spanish is between 80 percent and 85 percent of the school population, and the number who study French is between 30 percent and 40 percent. Let $m$ be the smallest number of students who could study both languages, and let $M$ be the largest number of students who could study both languages. Find $M-m$.

2007 AIME Problems, 7

Let \[N= \sum_{k=1}^{1000}k(\lceil \log_{\sqrt{2}}k\rceil-\lfloor \log_{\sqrt{2}}k \rfloor).\] Find the remainder when N is divided by 1000. (Here $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x, and $\lceil x \rceil$ denotes the least integer that is greater than or equal to x.)

2024 ELMO Shortlist, A2

Let $n$ be a positive integer. Find the number of sequences $a_0,a_1,a_2,\dots,a_{2n}$ of integers in the range $[0,n]$ such that for all integers $0\leq k\leq n$ and all nonnegative integers $m$, there exists an integer $k\leq i\leq 2k$ such that $\lfloor k/2^m\rfloor=a_i.$ [i]Andrew Carratu[/i]

2009 Romania Team Selection Test, 3

Given an integer $n\geq 2$ and a closed unit disc, evaluate the maximum of the product of the lengths of all $\frac{n(n-1)}{2}$ segments determined by $n$ points in that disc.

2002 AMC 12/AHSME, 21

Consider the sequence of numbers: $ 4, 7, 1, 8, 9, 7, 6, \ldots .$ For $ n > 2$, the $ n$th term of the sequence is the units digit of the sum of the two previous terms. Let $ S_n$ denote the sum of the first $ n$ terms of this sequence. The smallest value of $ n$ for which $ S_n > 10,000$ is: $ \textbf{(A)}\ 1992 \qquad \textbf{(B)}\ 1999 \qquad \textbf{(C)}\ 2001 \qquad \textbf{(D)}\ 2002 \qquad \textbf{(E)}\ 2004$

2010 Belarus Team Selection Test, 4.3

a) Prove that there are infinitely many pairs $(m, n)$ of positive integers satisfying the following equality $[(4 + 2\sqrt3)m] = [(4 -2\sqrt3)n]$ b) Prove that if $(m, n)$ satisfies the equality, then the number $(n + m)$ is odd. (I. Voronovich)

2006 Estonia National Olympiad, 5

Consider a rectangular grid of $ 10 \times 10$ unit squares. We call a [i]ship[/i] a figure made up of unit squares connected by common edges. We call a [i]fleet[/i] a set of ships where no two ships contain squares that share a common vertex (i.e. all ships are vertex-disjoint). Find the least number of squares in a fleet to which no new ship can be added.

2012 ELMO Shortlist, 4

A tournament on $2k$ vertices contains no $7$-cycles. Show that its vertices can be partitioned into two sets, each with size $k$, such that the edges between vertices of the same set do not determine any $3$-cycles. [i]Calvin Deng.[/i]

2006 Romania National Olympiad, 3

Prove that among the elements of the sequence $\left( \left\lfloor n \sqrt 2 \right\rfloor + \left\lfloor n \sqrt 3 \right\rfloor \right)_{n \geq 0}$ are an infinity of even numbers and an infinity of odd numbers.

1981 Bundeswettbewerb Mathematik, 1

A sequence $a_1, a_2, a_3, \ldots $ is defined as follows: $a_1$ is a positive integer and $$a_{n+1} = \left\lfloor \frac{3}{2} a_n \right\rfloor +1$$ for all $n \in \mathbb{N}$. Can $a_1$ be chosen in such a way that the first $100000$ terms of the sequence are even, but the $100001$-th term is odd?

2006 Princeton University Math Competition, 5

Find the greatest integer less than the number $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{1000000}}$