This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1187

2010 AMC 10, 25

Let $ a>0$, and let $ P(x)$ be a polynomial with integer coefficients such that \[ P(1)\equal{}P(3)\equal{}P(5)\equal{}P(7)\equal{}a\text{, and}\] \[ P(2)\equal{}P(4)\equal{}P(6)\equal{}P(8)\equal{}\minus{}a\text{.}\] What is the smallest possible value of $ a$? $ \textbf{(A)}\ 105 \qquad \textbf{(B)}\ 315 \qquad \textbf{(C)}\ 945 \qquad \textbf{(D)}\ 7! \qquad \textbf{(E)}\ 8!$

2014 Hanoi Open Mathematics Competitions, 7

Determine the integral part of $A$, where $A =\frac{1}{672}+\frac{1}{673}+... +\frac{1}{2014}$

1999 CentroAmerican, 6

Denote $S$ as the subset of $\{1,2,3,\dots,1000\}$ with the property that none of the sums of two different elements in $S$ is in $S$. Find the maximum number of elements in $S$.

2013 Bundeswettbewerb Mathematik, 4

Two players $A$ and $B$ play the following game taking alternate moves. In each move, a player writes one digit on the blackboard. Each new digit is written either to the right or left of the sequence of digits already written on the blackboard. Suppose that $A$ begins the game and initially the blackboard was empty. $B$ wins the game if ,after some move of $B$, the sequence of digits written in the blackboard represents a perfect square. Prove that $A$ can prevent $B$ from winning.

2001 Kazakhstan National Olympiad, 5

Find all possible pairs of real numbers $ (x, y) $ that satisfy the equalities $ y ^ 2- [x] ^ 2 = 2001 $ and $ x ^ 2 + [y] ^ 2 = 2001 $.

2013 Harvard-MIT Mathematics Tournament, 6

Let $R$ be the region in the Cartesian plane of points $(x,y)$ satisfying $x\geq 0$, $y\geq 0$, and $x+y+\lfloor x\rfloor+\lfloor y\rfloor\leq 5$. Determine the area of $R$.

2011 Romania Team Selection Test, 2

Prove that the set $S=\{\lfloor n\pi\rfloor \mid n=0,1,2,3,\ldots\}$ contains arithmetic progressions of any finite length, but no infinite arithmetic progressions. [i]Vasile Pop[/i]

2018 Junior Balkan Team Selection Tests - Romania, 1

Let $ p$ be a prime number with $ p>5$. Consider the set $ X \equal{} \left\{p \minus{} n^2 \mid n\in \mathbb{N} ,\ n^2 < p\right\}$. Prove that the set $ X$ has two distinct elements $ x$ and $ y$ such that $ x\neq 1$ and $ x\mid y$. [i]Albania[/i]

2013 Romania National Olympiad, 3

Find all real $x > 0$ and integer $n > 0$ so that $$ \lfloor x \rfloor+\left\{ \frac{1}{x}\right\}= 1.005 \cdot n.$$

2012 Princeton University Math Competition, A7 / B8

Let $a_n$ be a sequence such that $a_1 = 1$ and $a_{n+1} = \lfloor a_n +\sqrt{a_n} +\frac12 \rfloor $, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. What are the last four digits of $a_{2012}$?

2018 Peru IMO TST, 5

Let $d$ be a positive integer. The seqeunce $a_1, a_2, a_3,...$ of positive integers is defined by $a_1 = 1$ and $a_{n + 1} = n\left \lfloor \frac{a_n}{n} \right \rfloor+ d$ for $n = 1,2,3, ...$ . Prove that there exists a positive integer $N$ so that the terms $a_N,a_{N + 1}, a_{N + 2},...$ form an arithmetic progression. Note: If $x$ is a real number, $\left \lfloor x \right \rfloor $ denotes the largest integer that is less than or equal to $x$.

2008 ITest, 75

Let \[S=\sqrt{1+\dfrac1{1^2}+\dfrac1{2^2}}+\sqrt{1+\dfrac1{2^2}+\dfrac1{3^2}}+\cdots+\sqrt{1+\dfrac1{2007^2}+\dfrac1{2008^2}}.\] Compute $\lfloor S^2\rfloor$.

PEN A Problems, 47

Let $n$ be a positive integer with $n>1$. Prove that \[\frac{1}{2}+\cdots+\frac{1}{n}\] is not an integer.

2018 Chile National Olympiad, 4

Find all postitive integers n such that $$\left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n}{4} \right\rfloor=n^2$$ where $\lfloor x \rfloor$ represents the largest integer less than the real number $x$.

1999 Korea Junior Math Olympiad, 3

Recall that $[x]$ denotes the largest integer not exceeding $x$ for real $x$. For integers $a, b$ in the interval $1 \leq a<b \leq 100$, find the number of ordered pairs $(a, b)$ satisfying the following equation. $$[a+\frac{b}{a}]=[b+\frac{a}{b}]$$

2005 Junior Balkan Team Selection Tests - Romania, 13

The positive integers from 1 to $n^2$ are placed arbitrarily on the $n^2$ squares of a $n\times n$ chessboard. Two squares are called [i]adjacent[/i] if they have a common side. Show that two opposite corner squares can be joined by a path of $2n-1$ adjacent squares so that the sum of the numbers placed on them is at least $\left\lfloor \frac{n^3} 2 \right\rfloor + n^2 - n + 1$. [i]Radu Gologan[/i]

2005 Romania Team Selection Test, 3

Let $n\geq 0$ be an integer and let $p \equiv 7 \pmod 8$ be a prime number. Prove that \[ \sum^{p-1}_{k=1} \left \{ \frac {k^{2^n}}p - \frac 12 \right\} = \frac {p-1}2 . \] [i]Călin Popescu[/i]

1996 Putnam, 5

Given a finite binary string $S$ of symbols $X,O$ we define $\Delta(S)=n(X)-n(O)$ where $n(X),n(O)$ respectively denote number of $X$'s and $O$'s in a string. For example $\Delta(XOOXOOX)=3-4=-1$. We call a string $S$ $\emph{balanced}$ if every substring $T$ of $S$ has $-2\le \Delta(T)\le 2$. Find number of balanced strings of length $n$.

2009 Indonesia MO, 4

In an island, there exist 7 towns and a railway system which connected some of the towns. Every railway segment connects 2 towns, and in every town there exists at least 3 railway segments that connects the town to another towns. Prove that there exists a route that visits 4 different towns once and go back to the original town. (Example: $ A\minus{}B\minus{}C\minus{}D\minus{}A$)

2003 Indonesia MO, 3

Find all real numbers $x$ such that $\left\lfloor x^2 \right\rfloor + \left\lceil x^2 \right\rceil = 2003$.

2010 AIME Problems, 14

For each positive integer n, let $ f(n) \equal{} \sum_{k \equal{} 1}^{100} \lfloor \log_{10} (kn) \rfloor$. Find the largest value of n for which $ f(n) \le 300$. [b]Note:[/b] $ \lfloor x \rfloor$ is the greatest integer less than or equal to $ x$.

2025 VJIMC, 2

Determine all real numbers $x>1$ such that \[ \left\lfloor\frac{n+1}{x}\right\rfloor = n - \left\lfloor \frac{n}{x} \right\rfloor + \left \lfloor \frac{\left \lfloor \frac{n}{x} \right\rfloor}{x}\right \rfloor - \left \lfloor \frac{\left \lfloor \frac{\left\lfloor \frac{n}{x} \right\rfloor}{x} \right\rfloor}{x}\right \rfloor + \cdots \] for any positive integer $n$.

PEN A Problems, 38

Let $p$ be a prime with $p>5$, and let $S=\{p-n^2 \vert n \in \mathbb{N}, {n}^{2}<p \}$. Prove that $S$ contains two elements $a$ and $b$ such that $a \vert b$ and $1<a<b$.

2004 Romania National Olympiad, 2

Let $n \in \mathbb N$, $n \geq 2$. (a) Give an example of two matrices $A,B \in \mathcal M_n \left( \mathbb C \right)$ such that \[ \textrm{rank} \left( AB \right) - \textrm{rank} \left( BA \right) = \left\lfloor \frac{n}{2} \right\rfloor . \] (b) Prove that for all matrices $X,Y \in \mathcal M_n \left( \mathbb C \right)$ we have \[ \textrm{rank} \left( XY \right) - \textrm{rank} \left( YX \right) \leq \left\lfloor \frac{n}{2} \right\rfloor . \] [i]Ion Savu[/i]

1997 AIME Problems, 11

Let $x=\frac{\displaystyle\sum_{n=1}^{44} \cos n^\circ}{\displaystyle \sum_{n=1}^{44} \sin n^\circ}.$ What is the greatest integer that does not exceed $100x$?