This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 16

1974 IMO Shortlist, 8

The variables $a,b,c,d,$ traverse, independently from each other, the set of positive real values. What are the values which the expression \[ S= \frac{a}{a+b+d} + \frac{b}{a+b+c} + \frac{c}{b+c+d} + \frac{d}{a+c+d} \] takes?

2009 Korea Junior Math Olympiad, 6

If positive reals $a,b,c,d$ satisfy $abcd = 1.$ Prove the following inequality $$1<\frac{b}{ab+b+1}+\frac{c}{bc+c+1}+\frac{d}{cd+d+1}+\frac{a}{da+a+1}<2.$$

2018 Greece JBMO TST, 1

Let $a,b,c,d$ be positive real numbers such that $a^2+b^2+c^2+d^2=4$. Prove that exist two of $a,b,c,d$ with sum less or equal to $2$.

2006 Korea Junior Math Olympiad, 6

For all reals $a, b, c,d $ prove the following inequality: $$\frac{a + b + c + d}{(1 + a^2)(1 + b^2)(1 + c^2)(1 + d^2)}< 1$$

1993 IMO Shortlist, 9

Let $a,b,c,d$ be four non-negative numbers satisfying \[ a+b+c+d=1. \] Prove the inequality \[ a \cdot b \cdot c + b \cdot c \cdot d + c \cdot d \cdot a + d \cdot a \cdot b \leq \frac{1}{27} + \frac{176}{27} \cdot a \cdot b \cdot c \cdot d. \]

1985 Austrian-Polish Competition, 7

Find an upper bound for the ratio $$\frac{x_1x_2+2x_2x_3+x_3x_4}{x_1^2+x_2^2+x_3^2+x_4^2}$$ over all quadruples of real numbers $(x_1,x_2,x_3,x_4)\neq (0,0,0,0)$. [i]Note.[/i] The smaller the bound, the better the solution.

1974 IMO, 5

The variables $a,b,c,d,$ traverse, independently from each other, the set of positive real values. What are the values which the expression \[ S= \frac{a}{a+b+d} + \frac{b}{a+b+c} + \frac{c}{b+c+d} + \frac{d}{a+c+d} \] takes?

1996 IMO Shortlist, 6

Let the sides of two rectangles be $ \{a,b\}$ and $ \{c,d\},$ respectively, with $ a < c \leq d < b$ and $ ab < cd.$ Prove that the first rectangle can be placed within the second one if and only if \[ \left(b^2 \minus{} a^2\right)^2 \leq \left(bc \minus{} ad \right)^2 \plus{} \left(bd \minus{} ac \right)^2.\]

2002 Olympic Revenge, 3

Show that if $x,y,z,w$ are positive reals, then \[ \frac{3}{2}\sqrt{(x^2+y^2)(w^2+z^2)} + \sqrt{(x^2+w^2)(y^2+z^2) - 3xyzw} \geq (x+z)(y+w) \]

1971 IMO Shortlist, 17

Prove the inequality \[ \frac{a_1+ a_3}{a_1 + a_2} + \frac{a_2 + a_4}{a_2 + a_3} + \frac{a_3 + a_1}{a_3 + a_4} + \frac{a_4 + a_2}{a_4 + a_1} \geq 4, \] where $a_i > 0, i = 1, 2, 3, 4.$

2014 IMAC Arhimede, 6

If $a, b, c, d$ are positive numbers, prove that $$\sum_{cyclic}\frac{a-\sqrt[3]{bcd}}{a+3(b+c+d)}\ge 0$$

2025 Philippine MO, P5

Find the largest real constant $k$ for which the inequality \[(a^2 + 3)(b^2 + 3)(c^2 + 3)(d^2 + 3) + k(a - 1)(b - 1)(c - 1)(d - 1) \ge 0\] holds for all real numbers $a$, $b$, $c$, and $d$.

1974 IMO Longlists, 22

The variables $a,b,c,d,$ traverse, independently from each other, the set of positive real values. What are the values which the expression \[ S= \frac{a}{a+b+d} + \frac{b}{a+b+c} + \frac{c}{b+c+d} + \frac{d}{a+c+d} \] takes?

2008 Moldova National Olympiad, 9.8

Prove that \[ \frac{a}{b+2c+3d} +\frac{b}{c+2d+3a} +\frac{c}{d+2a+3b}+ \frac{d}{a+2b+3c} \geq \frac{2}{3} \] for all positive real numbers $a,b,c,d$.

1971 IMO Longlists, 52

Prove the inequality \[ \frac{a_1+ a_3}{a_1 + a_2} + \frac{a_2 + a_4}{a_2 + a_3} + \frac{a_3 + a_1}{a_3 + a_4} + \frac{a_4 + a_2}{a_4 + a_1} \geq 4, \] where $a_i > 0, i = 1, 2, 3, 4.$

1993 IMO Shortlist, 3

Prove that \[ \frac{a}{b+2c+3d} +\frac{b}{c+2d+3a} +\frac{c}{d+2a+3b}+ \frac{d}{a+2b+3c} \geq \frac{2}{3} \] for all positive real numbers $a,b,c,d$.