Found problems: 4776
2012 Online Math Open Problems, 25
Let $a,b,c$ be the roots of the cubic $x^3 + 3x^2 + 5x + 7$. Given that $P$ is a cubic polynomial such that $P(a)=b+c$, $P(b) = c+a$, $P(c) = a+b$, and $P(a+b+c) = -16$, find $P(0)$.
[i]Author: Alex Zhu[/i]
2018 Czech-Polish-Slovak Match, 1
Determine all functions $f : \mathbb R \to \mathbb R$ such that for all real numbers $x$ and $y$,
$$f(x^2 + xy) = f(x)f(y) + yf(x) + xf(x+y).$$
[i]Proposed by Walther Janous, Austria[/i]
2005 France Pre-TST, 8
Let $f$ be a function from the set $Q$ of the rational numbers onto itself such that $f(x+y)=f(x)+f(y)+2547$ for all rational numbers $x,y$.
Moreover $f(2004) = 2547$.
Determine $f(2547).$
Pierre.
1998 National Olympiad First Round, 24
Let $ n\left(A\right)$ be the number of distinct real solutions of the equation $ x^{6} \minus{}2x^{4} \plus{}x^{2} \equal{}A$. When $ A$ takes every value on real numbers, the set of values of $ n\left(A\right)$ is
$\textbf{(A)}\ \left\{0,1,2,3,4,5,6\right\} \\ \textbf{(B)}\ \left\{0,2,4,6\right\} \\ \textbf{(C)}\ \left\{0,3,4,6\right\} \\ \textbf{(D)}\ \left\{0,2,3,4,6\right\} \\ \textbf{(E)}\ \left\{0,2,3,4\right\}$
2010 Spain Mathematical Olympiad, 2
Let $\mathbb{N}_0$ and $\mathbb{Z}$ be the set of all non-negative integers and the set of all integers, respectively. Let $f:\mathbb{N}_0\rightarrow\mathbb{Z}$ be a function defined as
\[f(n)=-f\left(\left\lfloor\frac{n}{3}\right\rfloor \right)-3\left\{\frac{n}{3}\right\} \]
where $\lfloor x \rfloor$ is the greatest integer smaller than or equal to $x$ and $\{ x\}=x-\lfloor x \rfloor$. Find the smallest integer $n$ such that $f(n)=2010$.
1996 Romania Team Selection Test, 7
Let $ a\in \mathbb{R} $ and $ f_1(x),f_2(x),\ldots,f_n(x): \mathbb{R} \rightarrow \mathbb{R} $ are the additive functions such that for every $ x\in \mathbb{R} $ we have $ f_1(x)f_2(x) \cdots f_n(x) =ax^n $. Show that there exists $ b\in \mathbb {R} $ and $ i\in {\{1,2,\ldots,n}\} $ such that for every $ x\in \mathbb{R} $ we have $ f_i(x)=bx $.
2005 Iran MO (3rd Round), 3
Find all $\alpha>0$ and $\beta>0$ that for each $(x_1,\dots,x_n)$ and $(y_1,\dots,y_n)\in\mathbb {R^+}^n$ that:\[(\sum x_i^\alpha)(\sum y_i^\beta)\geq\sum x_iy_i\]
2000 AMC 10, 12
Figures $ 0$, $ 1$, $ 2$, and $ 3$ consist of $ 1$, $ 5$, $ 13$, and $ 25$ nonoverlapping squares, respectively. If the pattern were continued, how many nonoverlapping squares would there be in figure $ 100$?
[asy]
unitsize(8);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);
draw((9,0)--(10,0)--(10,3)--(9,3)--cycle);
draw((8,1)--(11,1)--(11,2)--(8,2)--cycle);
draw((19,0)--(20,0)--(20,5)--(19,5)--cycle);
draw((18,1)--(21,1)--(21,4)--(18,4)--cycle);
draw((17,2)--(22,2)--(22,3)--(17,3)--cycle);
draw((32,0)--(33,0)--(33,7)--(32,7)--cycle);
draw((29,3)--(36,3)--(36,4)--(29,4)--cycle);
draw((31,1)--(34,1)--(34,6)--(31,6)--cycle);
draw((30,2)--(35,2)--(35,5)--(30,5)--cycle);
label("Figure",(0.5,-1),S);
label("$0$",(0.5,-2.5),S);
label("Figure",(9.5,-1),S);
label("$1$",(9.5,-2.5),S);
label("Figure",(19.5,-1),S);
label("$2$",(19.5,-2.5),S);
label("Figure",(32.5,-1),S);
label("$3$",(32.5,-2.5),S);[/asy]$ \textbf{(A)}\ 10401 \qquad \textbf{(B)}\ 19801 \qquad \textbf{(C)}\ 20201 \qquad \textbf{(D)}\ 39801 \qquad \textbf{(E)}\ 40801$
2007 ITAMO, 6
a) For each $n \ge 2$, find the maximum constant $c_{n}$ such that
$\frac 1{a_{1}+1}+\frac 1{a_{2}+1}+\ldots+\frac 1{a_{n}+1}\ge c_{n}$
for all positive reals $a_{1},a_{2},\ldots,a_{n}$ such that $a_{1}a_{2}\cdots a_{n}= 1$.
b) For each $n \ge 2$, find the maximum constant $d_{n}$ such that
$\frac 1{2a_{1}+1}+\frac 1{2a_{2}+1}+\ldots+\frac 1{2a_{n}+1}\ge d_{n}$
for all positive reals $a_{1},a_{2},\ldots,a_{n}$ such that $a_{1}a_{2}\cdots a_{n}= 1$.
2010 JBMO Shortlist, 1
The real numbers $a$, $b$, $c$, $d$ satisfy simultaneously the equations
\[abc -d = 1, \ \ \ bcd - a = 2, \ \ \ cda- b = 3, \ \ \ dab - c = -6.\] Prove that $a + b + c + d \not = 0$.
1980 IMO, 10
The function f is defined on the set $\mathbb{Q}$ of all rational numbers and has values in $\mathbb{Q}$. It satisfies the conditions $f(1)=2$ and $f(xy)=f(x)f(y)-f(x+y)+1$ for all $x,y \in \mathbb{Q}$. Determine f (with proof)
1993 Korea - Final Round, 5
Given $n \in\mathbb{N}$, find all continuous functions $f : \mathbb{R}\to \mathbb{R}$ such that for all $x\in\mathbb{R},$
\[\sum_{k=0}^{n}\binom{n}{k}f(x^{2^{k}})=0. \]
2012 Brazil National Olympiad, 1
In a culturing of bacteria, there are two species of them: red and blue bacteria.
When two red bacteria meet, they transform into one blue bacterium.
When two blue bacteria meet, they transform into four red bacteria.
When a red and a blue bacteria meet, they transform into three red bacteria.
Find, in function of the amount of blue bacteria and the red bacteria initially in the culturing,
all possible amounts of bacteria, and for every possible amount, the possible amounts of red and blue bacteria.
2012 IMC, 1
For every positive integer $n$, let $p(n)$ denote the number of ways to express $n$ as a sum of positive integers. For instance, $p(4)=5$ because
\[4=3+1=2+2=2+1+1=1+1+1.\]
Also define $p(0)=1$.
Prove that $p(n)-p(n-1)$ is the number of ways to express $n$ as a sum of integers each of which is strictly greater than 1.
[i]Proposed by Fedor Duzhin, Nanyang Technological University.[/i]
1990 China Team Selection Test, 4
Number $a$ is such that $\forall a_1, a_2, a_3, a_4 \in \mathbb{R}$, there are integers $k_1, k_2, k_3, k_4$ such that $\sum_{1 \leq i < j \leq 4} ((a_i - k_i) - (a_j - k_j))^2 \leq a$. Find the minimum of $a$.
1995 IMO Shortlist, 6
Let $ \mathbb{N}$ denote the set of all positive integers. Prove that there exists a unique function $ f: \mathbb{N} \mapsto \mathbb{N}$ satisfying
\[ f(m \plus{} f(n)) \equal{} n \plus{} f(m \plus{} 95)
\]
for all $ m$ and $ n$ in $ \mathbb{N}.$ What is the value of $ \sum^{19}_{k \equal{} 1} f(k)?$
2004 Romania National Olympiad, 3
Let $f : \left[ 0,1 \right] \to \mathbb R$ be an integrable function such that \[ \int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1 . \] Prove that \[ \int_0^1 f^2 (x) \, dx \geq 4 . \]
[i]Ion Rasa[/i]
2017 VJIMC, 1
Let $(a_n)_{n=1}^{\infty}$ be a sequence with $a_n \in \{0,1\}$ for every $n$. Let $F:(-1,1) \to \mathbb{R}$ be defined by
\[F(x)=\sum_{n=1}^{\infty} a_nx^n\]
and assume that $F\left(\frac{1}{2}\right)$ is rational. Show that $F$ is the quotient of two polynomials with integer coefficients.
India EGMO 2024 TST, 3
Find all functions $f: \mathbb{N} \mapsto \mathbb{N}$ so that for any positive integer $n$ and finite sequence of positive integers $a_0, \dots, a_n$, whenever the polynomial $a_0+a_1x+\dots+a_nx^n$ has at least one integer root, so does \[f(a_0)+f(a_1)x+\dots+f(a_n)x^n.\]
[i]Proposed by Sutanay Bhattacharya[/i]
2025 Poland - First Round, 1
Let $f(x)=ax^2+bx+c$ be a quadratic function, the graph of which doesn't intersect the x-axis. Prove that
$$a(2a+3b+6c)>0.$$
2024 Ukraine National Mathematical Olympiad, Problem 4
Find all functions $f:\mathbb{R} \to \mathbb{R}$, such that for any $x, y \in \mathbb{R}$ holds the following:
$$f(x)f(yf(x)) + yf(xy) = xf(xy) + y^2f(x)$$
[i]Proposed by Mykhailo Shtandenko[/i]
2019 Dutch IMO TST, 2
Write $S_n$ for the set $\{1, 2,..., n\}$. Determine all positive integers $n$ for which there exist functions $f : S_n \to S_n$ and $g : S_n \to S_n$ such that for every $x$ exactly one of the equalities $f(g(x)) = x$ and $g(f(x)) = x$ holds.
2007 District Olympiad, 3
Find all functions $ f:\mathbb{N}\longrightarrow\mathbb{N} $ that satisfy the following relation:
$$ f(x)^2+y\vdots x^2+f(y) ,\quad\forall x,y\in\mathbb{N} . $$
2007 Kazakhstan National Olympiad, 4
Find all functions $ f :\mathbb{R}\to\mathbb{R} $, satisfying the condition
$f (xf (y) + f (x)) = 2f (x) + xy$
for any real $x$ and $y$.
2002 AIME Problems, 12
Let $F(z)=\frac{z+i}{z-i}$ for all complex numbers $z\not= i,$ and let $z_n=F(z_{n-1})$ for all positive integers $n.$ Given that $z_0=\frac 1{137}+i$ and $z_{2002}=a+bi,$ where $a$ and $b$ are real numbers, find $a+b.$