Found problems: 4776
1966 Miklós Schweitzer, 7
Does there exist a function $ f(x,y)$ of two real variables that takes natural numbers as its values and for which $ f(x,y)\equal{}f(y,z)$ implies $ x\equal{}y\equal{}z?$
[i]A. Hajnal[/i]
2008 ISI B.Stat Entrance Exam, 2
A $40$ feet high screen is put on a vertical wall $10$ feet above your eye-level. How far should you stand to maximize the angle subtended by the screen (from top to bottom) at your eye?
2022 Germany Team Selection Test, 2
Given two positive integers $n$ and $m$ and a function $f : \mathbb{Z} \times \mathbb{Z} \to \left\{0,1\right\}$ with the property that
\begin{align*}
f\left(i, j\right) = f\left(i+n, j\right) = f\left(i, j+m\right) \qquad \text{for all } \left(i, j\right) \in \mathbb{Z} \times \mathbb{Z} .
\end{align*}
Let $\left[k\right] = \left\{1,2,\ldots,k\right\}$ for each positive integer $k$.
Let $a$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i+1, j\right) = f\left(i, j+1\right) .
\end{align*}
Let $b$ be the number of all $\left(i, j\right) \in \left[n\right] \times \left[m\right]$ satisfying
\begin{align*}
f\left(i, j\right) = f\left(i-1, j\right) = f\left(i, j-1\right) .
\end{align*}
Prove that $a = b$.
2002 Bulgaria National Olympiad, 1
Let $a_1, a_2... $ be an infinite sequence of real numbers such that $a_{n+1}=\sqrt{{a_n}^2+a_n-1}$. Prove that $a_1 \notin (-2,1)$
[i]Proposed by Oleg Mushkarov and Nikolai Nikolov
[/i]
1988 AIME Problems, 8
The function $f$, defined on the set of ordered pairs of positive integers, satisfies the following properties:
\begin{eqnarray*} f(x,x) &=& x, \\ f(x,y) &=& f(y,x), \quad \text{and} \\ (x + y) f(x,y) &=& yf(x,x + y). \end{eqnarray*}
Calculate $f(14,52)$.
2021 Science ON all problems, 1
Consider a function $f:\mathbb{R}\rightarrow \mathbb{R}$. For $x\in \mathbb{R}$ we say that $f$ is [i]increasing in $x$[/i] if there exists $\epsilon_x > 0$ such that $f(x)\geq{f(a)}$, $\forall a\in (x-\epsilon_x,x)$ and $f(x)\leq f(b)$, $\forall b\in (x,x+\epsilon_x)$.
$\textbf{(a)}$ Prove that if $f$ is increasing in $x$, $\forall x\in \mathbb{R}$ then $f$ is increasing over $\mathbb{R}$.
$\textbf{(b)}$ We say that $f$ is [i]increasing to the left[/i] in $x$ if there exists $\epsilon_x > 0$ such that $f(x)\geq f(a) $, $ \forall a \in (x-\epsilon_x,x)$. Provide an example of a function $f: [0,1]\rightarrow \mathbb{R}$ for which there exists an infinite set $M \subset (0,1)$ such that $f$ is increasing to the left in every point of $M$, yet $f$ is increasing over no proper subinterval of $[0,1]$.
2010 Contests, 1
Determine all strictly increasing functions $f: \mathbb{N}\to\mathbb{N}$ satisfying $nf(f(n))=f(n)^2$ for all positive integers $n$.
[i]Carl Lian and Brian Hamrick.[/i]
2005 Today's Calculation Of Integral, 55
Evaluate
\[\lim_{n\to\infty} n\int_0^1 (1+x)^{-n-1}e^{x^2}\ dx\ \ ( n=1,2,\cdots)\]
2011 Today's Calculation Of Integral, 696
Let $P(x),\ Q(x)$ be polynomials such that :
\[\int_0^2 \{P(x)\}^2dx=14,\ \int_0^2 P(x)dx=4,\ \int_0^2 \{Q(x)\}^2dx=26,\ \int_0^2 Q(x)dx=2.\]
Find the maximum and the minimum value of $\int_0^2 P(x)Q(x)dx$.
1993 IMO Shortlist, 4
Let $n \geq 2, n \in \mathbb{N}$ and $A_0 = (a_{01},a_{02}, \ldots, a_{0n})$ be any $n-$tuple of natural numbers, such that $0 \leq a_{0i} \leq i-1,$ for $i = 1, \ldots, n.$
$n-$tuples $A_1= (a_{11},a_{12}, \ldots, a_{1n}), A_2 = (a_{21},a_{22}, \ldots, a_{2n}), \ldots$ are defined by: $a_{i+1,j} = Card \{a_{i,l}| 1 \leq l \leq j-1, a_{i,l} \geq a_{i,j}\},$ for $i \in \mathbb{N}$ and $j = 1, \ldots, n.$ Prove that there exists $k \in \mathbb{N},$ such that $A_{k+2} = A_{k}.$
2014 AMC 10, 25
The number $5^{867}$ is between $2^{2013}$ and $2^{2014}$. How many pairs of integers $(m,n)$ are there such that $1\leq m\leq 2012$ and \[5^n<2^m<2^{m+2}<5^{n+1}?\]
$\textbf{(A) }278\qquad
\textbf{(B) }279\qquad
\textbf{(C) }280\qquad
\textbf{(D) }281\qquad
\textbf{(E) }282\qquad$
1982 Miklós Schweitzer, 5
Find a perfect set $ H \subset [0,1]$ of positive measure and a continuous function $ f$ defined on $ [0,1]$ such that for any twice differentiable function $ g$ defined on $ [0,1]$, the set $ \{ x \in H : \;f(x)\equal{}g(x)\ \}$ is finite.
[i]M. Laczkovich[/i]
2012 France Team Selection Test, 1
Let $k>1$ be an integer. A function $f:\mathbb{N^*}\to\mathbb{N^*}$ is called $k$-[i]tastrophic[/i] when for every integer $n>0$, we have $f_k(n)=n^k$ where $f_k$ is the $k$-th iteration of $f$:
\[f_k(n)=\underbrace{f\circ f\circ\cdots \circ f}_{k\text{ times}}(n)\]
For which $k$ does there exist a $k$-tastrophic function?
2024 USAJMO, 5
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ that satisfy
\[
f(x^2-y)+2yf(x)=f(f(x))+f(y)
\]
for all $x,y\in\mathbb{R}$.
[i]Proposed by Carl Schildkraut[/i]
2017 IMO Shortlist, A8
A function $f:\mathbb{R} \to \mathbb{R}$ has the following property:
$$\text{For every } x,y \in \mathbb{R} \text{ such that }(f(x)+y)(f(y)+x) > 0, \text{ we have } f(x)+y = f(y)+x.$$
Prove that $f(x)+y \leq f(y)+x$ whenever $x>y$.
2006 Romania National Olympiad, 4
Let $f: [0,\infty)\to\mathbb R$ be a function such that for any $x>0$ the sequence $\{f(nx)\}_{n\geq 0}$ is increasing.
a) If the function is also continuous on $[0,1]$ is it true that $f$ is increasing?
b) The same question if the function is continuous on $\mathbb Q \cap [0, \infty)$.
1989 APMO, 5
Determine all functions $f$ from the reals to the reals for which
(1) $f(x)$ is strictly increasing and (2) $f(x) + g(x) = 2x$ for all real $x$,
where $g(x)$ is the composition inverse function to $f(x)$. (Note: $f$ and $g$ are said to be composition inverses if $f(g(x)) = x$ and $g(f(x)) = x$ for all real $x$.)
2000 Putnam, 1
Let $A$ be a positive real number. What are the possible values of $\displaystyle\sum_{j=0}^{\infty} x_j^2, $ given that $x_0, x_1, \cdots$ are positive numbers for which $\displaystyle\sum_{j=0}^{\infty} x_j = A$?
2008 Iran MO (3rd Round), 5
Find all polynomials $ f\in\mathbb Z[x]$ such that for each $ a,b,x\in\mathbb N$
\[ a\plus{}b\plus{}c|f(a)\plus{}f(b)\plus{}f(c)\]
2009 Harvard-MIT Mathematics Tournament, 5
Compute \[\lim_{h\to 0}\dfrac{\sin(\frac{\pi}{3}+4h)-4\sin(\frac{\pi}{3}+3h)+6\sin(\frac{\pi}{3}+2h)-4\sin(\frac{\pi}{3}+h)+\sin(\frac{\pi}{3})}{h^4}.\]
1986 Federal Competition For Advanced Students, P2, 6
Given a positive integer $ n$, find all functions $ F: \mathbb{N} \rightarrow \mathbb{R}$ such that $ F(x\plus{}y)\equal{}F(xy\minus{}n)$ whenever $ x,y \in \mathbb{N}$ satisfy $ xy>n$.
1989 Chile National Olympiad, 6
The function $f$, with domain on the set of non-negative integers, is defined by the following :
$\bullet$ $f (0) = 2$
$\bullet$ $(f (n + 1) -1)^2 + (f (n)-1) ^2 = 2f (n) f (n + 1) + 4$, taking $f (n)$ the largest possible value.
Determine $f (n)$.
2022 Kosovo Team Selection Test, 1
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all real numbers $x$ and $y$,
$$f(x^2)+2f(xy)=xf(x+y)+yf(x).$$
[i]Proposed by Dorlir Ahmeti, Kosovo[/i]
2012 Putnam, 5
Prove that, for any two bounded functions $g_1,g_2 : \mathbb{R}\to[1,\infty),$ there exist functions $h_1,h_2 : \mathbb{R}\to\mathbb{R}$ such that for every $x\in\mathbb{R},$\[\sup_{s\in\mathbb{R}}\left(g_1(s)^xg_2(s)\right)=\max_{t\in\mathbb{R}}\left(xh_1(t)+h_2(t)\right).\]
2004 Junior Balkan Team Selection Tests - Romania, 1
We consider the following triangular array
\[ \begin{array}{cccccccc}
0 & 1 & 1 & 2 & 3 & 5 & 8 & \ldots \\
\ & 0 & 1 & 1 & 2 & 3 & 5 & \ldots \\
\ & \ & 2 & 3 & 5 & 8 & 13 & \ldots \\
\ & \ & \ & 4 & 7 & 11 & 18 & \ldots \\
\ & \ & \ & \ & 12 & 19 & 31 & \ldots \\
\end{array} \]
which is defined by the conditions
i) on the first two lines, each element, starting with the third one, is the sum of the preceding two elements;
ii) on the other lines each element is the sum of the two numbers found on the same column above it.
a) Prove that all the lines satisfy the first condition i);
b) Let $a,b,c,d$ be the first elements of 4 consecutive lines in the array. Find $d$ as a function of $a,b,c$.