This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

MIPT Undergraduate Contest 2019, 1.2

Does there exist a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ that takes on only irrational values?

1978 IMO Shortlist, 11

A function $f : I \to \mathbb R$, defined on an interval $I$, is called concave if $f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in I$ and $0 \leq \theta \leq 1$. Assume that the functions $f_1, \ldots , f_n$, having all nonnegative values, are concave. Prove that the function $(f_1f_2 \cdots f_n)^{1/n}$ is concave.

2013 Romania National Olympiad, 1

Determine continuous functions $f:\mathbb{R}\to \mathbb{R}$ such that $\left( {{a}^{2}}+ab+{{b}^{2}} \right)\int\limits_{a}^{b}{f\left( x \right)dx=3\int\limits_{a}^{b}{{{x}^{2}}f\left( x \right)dx,}}$ for every $a,b\in \mathbb{R}$ .

2014 Romania National Olympiad, 2

Tags: function
Let be a function $ f:\mathbb{N}\longrightarrow\mathbb{N} $ satisfying $ \text{(i)} f(1)=1 $ $ \text{(ii)} f(p)=1+f(p-1), $ for any prime $ p $ $ \text{(iii)} f(p_1p_2\cdots p_u)=f(p_1)+f(p_2)+\cdots f(p_u), $ for any natural number $ u $ and any primes $ p_1,p_2,\ldots ,p_u. $ Show that $ 2^{f(n)}\le n^3\le 3^{f(n)}, $ for any natural $ n\ge 2. $

1987 IMO Shortlist, 1

Let f be a function that satisfies the following conditions: $(i)$ If $x > y$ and $f(y) - y \geq v \geq f(x) - x$, then $f(z) = v + z$, for some number $z$ between $x$ and $y$. $(ii)$ The equation $f(x) = 0$ has at least one solution, and among the solutions of this equation, there is one that is not smaller than all the other solutions; $(iii)$ $f(0) = 1$. $(iv)$ $f(1987) \leq 1988$. $(v)$ $f(x)f(y) = f(xf(y) + yf(x) - xy)$. Find $f(1987)$. [i]Proposed by Australia.[/i]

2013 Waseda University Entrance Examination, 3

Let $f(x)=\frac 12e^{2x}+2e^x+x$. Answer the following questions. (1) For a real number $t$, set $g(x)=tx-f(x).$ When $x$ moves in the range of all real numbers, find the range of $t$ for which $g(x)$ has maximum value, then for the range of $t$, find the maximum value of $g(x)$ and the value of $x$ which gives the maximum value. (2) Denote by $m(t)$ the maximum value found in $(1)$. Let $a$ be a constant, consider a function of $t$, $h(t)=at-m(t)$. When $t$ moves in the range of $t$ found in $(1)$, find the maximum value of $h(t)$.

1993 Romania Team Selection Test, 1

Let $f : R^+ \to R$ be a strictly increasing function such that $f\left(\frac{x+y}{2}\right) < \frac{f(x)+ f(y)}{2}$ for all $x,y > 0$. Prove that the sequence $a_n = f(n)$ ($n \in N$) does not contain an infinite arithmetic progression.

2006 AIME Problems, 12

Find the sum of the values of $x$ such that $\cos^3 3x+ \cos^3 5x = 8 \cos^3 4x \cos^3 x$, where $x$ is measured in degrees and $100< x< 200$.

2017 Vietnamese Southern Summer School contest, Problem 2

Find all functions $f:\mathbb{R}\mapsto \mathbb{R}$ satisfy: $$f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)$$ for all real numbers $x,y$.

2005 Harvard-MIT Mathematics Tournament, 8

If $f$ is a continuous real function such that $ f(x-1) + f(x+1) \ge x + f(x) $ for all $x$, what is the minimum possible value of $ \displaystyle\int_{1}^{2005} f(x) \, \mathrm{d}x $?

2011 Today's Calculation Of Integral, 722

Find the continuous function $f(x)$ such that : \[\int_0^x f(t)\left(\int_0^t f(t)dt\right)dt=f(x)+\frac 12\]

2014 AIME Problems, 3

Find the number of rational numbers $r$, $0<r<1$, such that when $r$ is written as a fraction in lowest terms, the numerator and denominator have a sum of $1000$.

2011 Baltic Way, 5

Tags: function , algebra
Let $f:\mathbb{R}\to\mathbb{R}$ be a function such that \[f(f(x))=x^2-x+1\] for all real numbers $x$. Determine $f(0)$.

2022 Israel TST, 2

Let $f: \mathbb{Z}^2\to \mathbb{R}$ be a function. It is known that for any integer $C$ the four functions of $x$ \[f(x,C), f(C,x), f(x,x+C), f(x, C-x)\] are polynomials of degree at most $100$. Prove that $f$ is equal to a polynomial in two variables and find its maximal possible degree. [i]Remark: The degree of a bivariate polynomial $P(x,y)$ is defined as the maximal value of $i+j$ over all monomials $x^iy^j$ appearing in $P$ with a non-zero coefficient.[/i]

2020 Moldova Team Selection Test, 11

Find all functions $f:[-1,1] \rightarrow \mathbb{R},$ which satisfy $$f(\sin{x})+f(\cos{x})=2020$$ for any real number $x.$

2012 ELMO Shortlist, 6

Consider a directed graph $G$ with $n$ vertices, where $1$-cycles and $2$-cycles are permitted. For any set $S$ of vertices, let $N^{+}(S)$ denote the out-neighborhood of $S$ (i.e. set of successors of $S$), and define $(N^{+})^k(S)=N^{+}((N^{+})^{k-1}(S))$ for $k\ge2$. For fixed $n$, let $f(n)$ denote the maximum possible number of distinct sets of vertices in $\{(N^{+})^k(X)\}_{k=1}^{\infty}$, where $X$ is some subset of $V(G)$. Show that there exists $n>2012$ such that $f(n)<1.0001^n$. [i]Linus Hamilton.[/i]

1984 Iran MO (2nd round), 2

Consider the function \[f(x)= \sin \biggl( \frac{\pi}{2} \lfloor x \rfloor \biggr).\] Find the period of $f$ and sketch diagram of $f$ in one period. Also prove that $\lim_{x \to 1} f(x)$ does not exist.

2013 Korea - Final Round, 2

Find all functions $ f : \mathbb{R}\to\mathbb{R}$ satisfying following conditions. (a) $ f(x) \ge 0 $ for all $ x \in \mathbb{R} $. (b) For $ a, b, c, d \in \mathbb{R} $ with $ ab + bc + cd = 0 $, equality $ f(a-b) + f(c-d) = f(a) + f(b+c) + f(d) $ holds.

2005 South East Mathematical Olympiad, 4

Find all positive integer solutions $(a, b, c)$ to the function $a^{2} + b^{2} + c^{2} = 2005$, where $a \leq b \leq c$.

2011 ELMO Problems, 4

Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ such that whenever $a>b>c>d>0$ and $ad=bc$, \[f(a+d)+f(b-c)=f(a-d)+f(b+c).\] [i]Calvin Deng.[/i]

2011 Romanian Master of Mathematics, 1

Tags: algebra , function
Prove that there exist two functions $f,g \colon \mathbb{R} \to \mathbb{R}$, such that $f\circ g$ is strictly decreasing and $g\circ f$ is strictly increasing. [i](Poland) Andrzej Komisarski and Marcin Kuczma[/i]

2024 IRN-SGP-TWN Friendly Math Competition, 4

Consider the function $f_k:\mathbb{Z}^{+}\rightarrow\mathbb{Z}^{+}$ satisfying \[f_k(x)=x+k\varphi(x)\] where $\varphi(x)$ is Euler's totient function, that is, the number of positive integers up to $x$ coprime to $x$. We define a sequence $a_1,a_2,...,a_{10}$ with [list] [*] $a_1=c$, and [*] $a_n=f_k(a_{n-1}) \text{ }\forall \text{ } 2\le n\le 10$ [/list] Is it possible to choose the initial value $c\ne 1$ such that each term is a multiple of the previous, if (a) $k=2025$ ? (b) $k=2065$ ? [i]Proposed by chorn[/i]

2008 ITest, 39

Let $\phi(n)$ denote $\textit{Euler's phi function}$, the number of integers $1\leq i\leq n$ that are relatively prime to $n$. (For example, $\phi(6)=2$ and $\phi(10)=4$.) Let \[S=\sum_{d|2008}\phi(d),\] in which $d$ ranges through all positive divisors of $2008$, including $1$ and $2008$. Find the remainder when $S$ is divided by $1000$.

1999 Balkan MO, 3

Let $ABC$ be an acute-angled triangle of area 1. Show that the triangle whose vertices are the feet of the perpendiculars from the centroid $G$ to $AB$, $BC$, $CA$ has area between $\frac 4{27}$ and $\frac 14$.

2009 ISI B.Stat Entrance Exam, 6

Let $f(x)$ be a function satisfying \[xf(x)=\ln x \ \ \ \ \ \ \ \ \text{for} \ \ x>0\] Show that $f^{(n)}(1)=(-1)^{n+1}n!\left(1+\frac{1}{2}+\cdots+\frac{1}{n}\right)$ where $f^{(n)}(x)$ denotes the $n$-th derivative evaluated at $x$.