This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2002 Iran Team Selection Test, 9

$\pi(n)$ is the number of primes that are not bigger than $n$. For $n=2,3,4,6,8,33,\dots$ we have $\pi(n)|n$. Does exist infinitely many integers $n$ that $\pi(n)|n$?

2010 ELMO Shortlist, 1

Determine all strictly increasing functions $f: \mathbb{N}\to\mathbb{N}$ satisfying $nf(f(n))=f(n)^2$ for all positive integers $n$. [i]Carl Lian and Brian Hamrick.[/i]

1989 IMO Longlists, 61

Prove for $ 0 < k \leq 1$ and $ a_i \in \mathbb{R}^\plus{},$ $ i \equal{} 1,2 \ldots, n$ the following inequality holds: \[ \left( \frac{a_1}{a_2 \plus{} \ldots \plus{} a_n} \right)^k \plus{} \ldots \plus{} \left( \frac{a_n}{a_1 \plus{} \ldots \plus{} a_{n\minus{}1}} \right)^k \geq \frac{n}{(n\minus{}1)^k}.\]

2011 Romania National Olympiad, 2

[color=darkred]Let $u:[a,b]\to\mathbb{R}$ be a continuous function that has finite left-side derivative $u_l^{\prime}(x)$ in any point $x\in (a,b]$ . Prove that the function $u$ is monotonously increasing if and only if $u_l^{\prime}(x)\ge 0$ , for any $x\in (a,b]$ .[/color]

1999 All-Russian Olympiad Regional Round, 11.1

The function $f(x)$, defined on the entire real line, is known but that for any $a > 1 $ the function $f(x)+f(ax)$ is continuous on the entire line. Prove that $f(x)$ is also continuous along the entire line.

2008 Korea Junior Math Olympiad, 7

Find all pairs of functions $f; g : R \to R$ such that for all reals $x.y \ne 0$ : $$f(x + y) = g \left(\frac{1}{x}+\frac{1}{y}\right) \cdot (xy)^{2008}$$

2008 AMC 12/AHSME, 19

A function $ f$ is defined by $ f(z) \equal{} (4 \plus{} i) z^2 \plus{} \alpha z \plus{} \gamma$ for all complex numbers $ z$, where $ \alpha$ and $ \gamma$ are complex numbers and $ i^2 \equal{} \minus{} 1$. Suppose that $ f(1)$ and $ f(i)$ are both real. What is the smallest possible value of $ | \alpha | \plus{} |\gamma |$? $ \textbf{(A)} \; 1 \qquad \textbf{(B)} \; \sqrt {2} \qquad \textbf{(C)} \; 2 \qquad \textbf{(D)} \; 2 \sqrt {2} \qquad \textbf{(E)} \; 4 \qquad$

2010 Contests, 1

Let $f:\mathbb N\rightarrow\mathbb N$ be a non-decreasing function and let $n$ be an arbitrary natural number. Suppose that there are prime numbers $p_1,p_2,\dots,p_n$ and natural numbers $s_1,s_2,\dots,s_n$ such that for each $1\leq i\leq n$ the set $\{f(p_ir+s_i)|r=1,2,\dots\}$ is an infinite arithmetic progression. Prove that there is a natural number $a$ such that \[f(a+1), f(a+2), \dots, f(a+n)\] form an arithmetic progression.

1958 AMC 12/AHSME, 39

We may say concerning the solution of \[ |x|^2 \plus{} |x| \minus{} 6 \equal{} 0 \] that: $ \textbf{(A)}\ \text{there is only one root}\qquad \textbf{(B)}\ \text{the sum of the roots is }{\plus{}1}\qquad \textbf{(C)}\ \text{the sum of the roots is }{0}\qquad \\ \textbf{(D)}\ \text{the product of the roots is }{\plus{}4}\qquad \textbf{(E)}\ \text{the product of the roots is }{\minus{}6}$

2005 Alexandru Myller, 2

Let $f:[0,1]\to\mathbb R$ be an increasing function. Prove that if $\int_0^1f(x)dx=\int_0^1\left(\int_0^xf(t)dt\right)dx=0$ then $f(x)=0,\forall x\in(0,1)$. [i]Mihai Piticari[/i]

2018 VTRMC, 3

Tags: algebra , function
Prove that there is no function $f:\mathbb{N}\rightarrow \mathbb{N}$ such that $f(f(n))=n+1.$ Here $\mathbb{N}$ is the positive integers $\{1,2,3,\dots\}.$

2007 Today's Calculation Of Integral, 173

Find the function $f(x)$ such that $f(x)=\cos (2mx)+\int_{0}^{\pi}f(t)|\cos t|\ dt$ for positive inetger $m.$

2020 Taiwan TST Round 2, 1

Let $\mathbb{R}$ denote the set of all real numbers. Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all real numbers $x$ and $y$, \[f(xy+xf(x))=f(x)\left(f(x)+f(y)\right).\]

1975 Miklós Schweitzer, 5

Let $ \{ f_n \}$ be a sequence of Lebesgue-integrable functions on $ [0,1]$ such that for any Lebesgue-measurable subset $ E$ of $ [0,1]$ the sequence $ \int_E f_n$ is convergent. Assume also that $ \lim_n f_n\equal{}f$ exists almost everywhere. Prove that $ f$ is integrable and $ \int_E f\equal{}\lim_n \int_E f_n$. Is the assertion also true if $ E$ runs only over intervals but we also assume $ f_n \geq 0 ?$ What happens if $ [0,1]$ is replaced by $ [0,\plus{}\infty) ?$ [i]J. Szucs[/i]

2005 Austrian-Polish Competition, 8

Given the sets $R_{mn} = \{ (x,y) \mid x=0,1,\dots,m; y=0,1,\dots,n \}$, consider functions $f:R_{mn}\to \{-1,0,1\}$ with the following property: for each quadruple of points $A_1,A_2,A_3,A_4\in R_{mn}$ which form a square with side length $0<s<3$, we have $$f(A_1)+f(A_2)+f(A_3)+f(A_4)=0.$$ For each pair $(m,n)$ of positive integers, determine $F(m,n)$, the number of such functions $f$ on $R_{mn}$.

2016 India National Olympiad, P3

Let $\mathbb{N}$ denote the set of natural numbers. Define a function $T:\mathbb{N}\rightarrow\mathbb{N}$ by $T(2k)=k$ and $T(2k+1)=2k+2$. We write $T^2(n)=T(T(n))$ and in general $T^k(n)=T^{k-1}(T(n))$ for any $k>1$. (i) Show that for each $n\in\mathbb{N}$, there exists $k$ such that $T^k(n)=1$. (ii) For $k\in\mathbb{N}$, let $c_k$ denote the number of elements in the set $\{n: T^k(n)=1\}$. Prove that $c_{k+2}=c_{k+1}+c_k$, for $k\ge 1$.

2024 CCA Math Bonanza, L2.1

Tags: function
Let $\tau(x)$ be the number of positive divisors of $x$ (including $1$ and $x$). Find \[\tau\left( \tau\left( \dots \tau\left(2024^{2024^{2024}}\right) \right)\right),\] where there are $4202^{4202^{4202}}$ $\tau$'s. [i]Lightning 2.1[/i]

1986 National High School Mathematics League, 8

Tags: function
$f(x)=|1-2x|,x\in[0,1]$. Then the number of solutions to $f(f(f(x)))=\frac{1}{2}x$ is________.

Today's calculation of integrals, 878

A cubic function $f(x)$ satisfies the equation $\sin 3t=f(\sin t)$ for all real numbers $t$. Evaluate $\int_0^1 f(x)^2\sqrt{1-x^2}\ dx$.

2014 PUMaC Algebra A, 4

There is a sequence with $a(2)=0$, $a(3)=1$ and $a(n)=a\left(\left\lfloor\dfrac n2\right\rfloor\right)+a\left(\left\lceil\dfrac n2\right\rceil\right)$ for $n\geq 4$. Find $a(2014)$. [Note that $\left\lfloor\dfrac n2\right\rfloor$ and $\left\lceil\dfrac n2\right\rceil$ denote the floor function (largest integer $\leq\tfrac n2$) and the ceiling function (smallest integer $\geq\tfrac n2$), respectively.]

1973 Miklós Schweitzer, 6

If $ f$ is a nonnegative, continuous, concave function on the closed interval $ [0,1]$ such that $ f(0)=1$, then \[ \int_0^1 xf(x)dx \leq \frac 23 \left[ %Error. "diaplaymath" is a bad command. \int_0^1 f(x)dx \right]^2.\] [i]Z. Daroczy[/i]

2013 Pan African, 2

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that $f(x)f(y)+f(x+y)=xy$ for all real numbers $x$ and $y$.

1972 IMO Longlists, 7

$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.

1994 IMC, 3

Let $f$ be a real-valued function with $n+1$ derivatives at each point of $\mathbb R$. Show that for each pair of real numbers $a$, $b$, $a<b$, such that $$\ln\left( \frac{f(b)+f'(b)+\cdots + f^{(n)} (b)}{f(a)+f'(a)+\cdots + f^{(n)}(a)}\right)=b-a$$ there is a number $c$ in the open interval $(a,b)$ for which $$f^{(n+1)}(c)=f(c)$$

2006 Putnam, B5

For each continuous function $f: [0,1]\to\mathbb{R},$ let $I(f)=\int_{0}^{1}x^{2}f(x)\,dx$ and $J(f)=\int_{0}^{1}x\left(f(x)\right)^{2}\,dx.$ Find the maximum value of $I(f)-J(f)$ over all such functions $f.$