This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

1999 Korea - Final Round, 2

Suppose $f(x)$ is a function satisfying $\left | f(m+n)-f(m) \right | \leq \frac{n}{m}$ for all positive integers $m$,$n$. Show that for all positive integers $k$: \[\sum_{i=1}^{k}\left |f(2^k)-f(2^i) \right |\leq \frac{k(k-1)}{2}\].

2010 Contests, 1

Let $f:S\to\mathbb{R}$ be the function from the set of all right triangles into the set of real numbers, defined by $f(\Delta ABC)=\frac{h}{r}$, where $h$ is the height with respect to the hypotenuse and $r$ is the inscribed circle's radius. Find the image, $Im(f)$, of the function.

1979 Brazil National Olympiad, 1

Show that if $a < b$ are in the interval $\left[0, \frac{\pi}{2}\right]$ then $a - \sin a < b - \sin b$. Is this true for $a < b$ in the interval $\left[\pi,\frac{3\pi}{2}\right]$?

2014 Polish MO Finals, 1

Denote the set of positive rational numbers by $\mathbb{Q}_{+}$. Find all functions $f: \mathbb{Q}_{+}\rightarrow \mathbb{Q}_{+}$ that satisfy $$\underbrace{f(f(f(\dots f(f}_{n}(q))\dots )))=f(nq)$$ for all integers $n\ge 1$ and rational numbers $q>0$.

2019 China Team Selection Test, 4

Find all functions $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, such that 1) $f(0,x)$ is non-decreasing ; 2) for any $x,y \in \mathbb{R}$, $f(x,y)=f(y,x)$ ; 3) for any $x,y,z \in \mathbb{R}$, $(f(x,y)-f(y,z))(f(y,z)-f(z,x))(f(z,x)-f(x,y))=0$ ; 4) for any $x,y,a \in \mathbb{R}$, $f(x+a,y+a)=f(x,y)+a$ .

2006 IberoAmerican Olympiad For University Students, 7

Consider the multiplicative group $A=\{z\in\mathbb{C}|z^{2006^k}=1, 0<k\in\mathbb{Z}\}$ of all the roots of unity of degree $2006^k$ for all positive integers $k$. Find the number of homomorphisms $f:A\to A$ that satisfy $f(f(x))=f(x)$ for all elements $x\in A$.

2011 IMO Shortlist, 6

Let $f : \mathbb R \to \mathbb R$ be a real-valued function defined on the set of real numbers that satisfies \[f(x + y) \leq yf(x) + f(f(x))\] for all real numbers $x$ and $y$. Prove that $f(x) = 0$ for all $x \leq 0$. [i]Proposed by Igor Voronovich, Belarus[/i]

2014 Romania National Olympiad, 3

Let $ f:[1,\infty )\longrightarrow (0,\infty ) $ be a continuous function satisfying the following properties: $ \text{(i)}\exists\lim_{x\to\infty } \frac{f(x)}{x}\in\overline{\mathbb{R}} $ $ \text{(ii)}\exists\lim_{x\to\infty } \frac{1}{x}\int_1^x f(t)dt\in\mathbb{R}. $ [b]a)[/b] Show that $ \lim_{x\to\infty } \frac{f(x)}{x}=0. $ [b]b)[/b] Prove that $ \lim_{x\to\infty } \frac{1}{x^2}\int_1^x f^2(t)dt=0. $

2005 Romania Team Selection Test, 3

Let $\mathbb{N}=\{1,2,\ldots\}$. Find all functions $f: \mathbb{N}\to\mathbb{N}$ such that for all $m,n\in \mathbb{N}$ the number $f^2(m)+f(n)$ is a divisor of $(m^2+n)^2$.

1963 Putnam, A2

Let $f:\mathbb{N}\rightarrow \mathbb{N}$ be a strictly increasing function such that $f(2)=2$ and $f(mn)=f(m)f(n)$ for every pair of relatively prime positive integers $m$ and $n$. Prove that $f(n)=n$ for every positive integer $n$.

2014 Iran MO (3rd Round), 4

Let $P$ be a regular $2n$-sided polygon. A [b]rhombus-ulation[/b] of $P$ is dividing $P$ into rhombuses such that no two intersect and no vertex of any rhombus is on the edge of other rhombuses or $P$. (a) Prove that number of rhombuses is a function of $n$. Find the value of this function. Also find the number of vertices and edges of the rhombuses as a function of $n$. (b) Prove or disprove that there always exists an edge $e$ of $P$ such that by erasing all the segments parallel to $e$ the remaining rhombuses are connected. (c) Is it true that each two rhombus-ulations can turn into each other using the following algorithm multiple times? Algorithm: Take a hexagon -not necessarily regular- consisting of 3 rhombuses and re-rhombus-ulate the hexagon. (d) Let $f(n)$ be the number of ways to rhombus-ulate $P$. Prove that:\[\Pi_{k=1}^{n-1} ( \binom{k}{2} +1) \leq f(n) \leq \Pi_{k=1}^{n-1} k^{n-k} \]

2013 Greece Team Selection Test, 3

Find the largest possible value of $M$ for which $\frac{x}{1+\frac{yz}{x}}+\frac{y}{1+\frac{zx}{y}}+\frac{z}{1+\frac{xy}{z}}\geq M$ for all $x,y,z>0$ with $xy+yz+zx=1$

1979 IMO Longlists, 56

Show that for every $n\in\mathbb{N}$, $n\sqrt{2}-\lfloor n\sqrt{2}\rfloor>\frac{1}{2n \sqrt{2}}$ and that for every $\epsilon >0$, there exists an $n\in\mathbb{N}$ such that $ n\sqrt{2}-\lfloor n\sqrt{2}\rfloor < \frac{1}{2n \sqrt{2}}+\epsilon$.

2001 China Team Selection Test, 3

For a given natural number $k > 1$, find all functions $f:\mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, $f[x^k + f(y)] = y +[f(x)]^k$.

2010 China National Olympiad, 3

Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.

1999 Dutch Mathematical Olympiad, 4

Consider a matrix of size $8 \times 8$, containing positive integers only. One may repeatedly transform the entries of the matrix according to the following rules: -Multiply all entries in some row by 2. -Subtract 1 from all entries in some column. Prove that one can transform the given matrix into the zero matrix.

2005 ISI B.Stat Entrance Exam, 3

Tags: function , algebra
Let $f$ be a function defined on $\{(i,j): i,j \in \mathbb{N}\}$ satisfying (i) $f(i,i+1)=\frac{1}{3}$ for all $i$ (ii) $f(i,j)=f(i,k)+f(k,j)-2f(i,k)f(k,j)$ for all $k$ such that $i <k<j$. Find the value of $f(1,100)$.

1976 IMO Longlists, 32

We consider the infinite chessboard covering the whole plane. In every field of the chessboard there is a nonnegative real number. Every number is the arithmetic mean of the numbers in the four adjacent fields of the chessboard. Prove that the numbers occurring in the fields of the chessboard are all equal.

2000 All-Russian Olympiad Regional Round, 10.5

Is there a function $f(x)$ defined for all $x \in R$ and for all $x, y \in R $ satisfying the inequality $$|f(x + y) + \sin x + \sin y| < 2?$$

2006 District Olympiad, 1

Let $f_1,f_2,\ldots,f_n : [0,1]\to (0,\infty)$ be $n$ continuous functions, $n\geq 1$, and let $\sigma$ be a permutation of the set $\{1,2,\ldots, n\}$. Prove that \[ \prod^n_{i=1} \int^1_0 \frac{ f_i^2(x) }{ f_{\sigma(i)}(x) } dx \geq \prod^n_{i=1} \int^1_0 f_i(x) dx. \]

2008 Serbia National Math Olympiad, 3

Let $ a$, $ b$, $ c$ be positive real numbers such that $ a \plus{} b \plus{} c \equal{} 1$. Prove inequality: \[ \frac{1}{bc \plus{} a \plus{} \frac{1}{a}} \plus{} \frac{1}{ac \plus{} b \plus{} \frac{1}{b}} \plus{} \frac{1}{ab \plus{} c \plus{} \frac{1}{c}} \leqslant \frac{27}{31}.\]

2013 Today's Calculation Of Integral, 887

For the function $f(x)=\int_0^x \frac{dt}{1+t^2}$, answer the questions as follows. Note : Please solve the problems without using directly the formula $\int \frac{1}{1+x^2}\ dx=\tan^{-1}x +C$ for Japanese High School students those who don't study arc sin x, arc cos x, arc tanx. (1) Find $f(\sqrt{3})$ (2) Find $\int_0^{\sqrt{3}} xf(x)\ dx$ (3) Prove that for $x>0$. $f(x)+f\left(\frac{1}{x}\right)$ is constant, then find the value.

2007 Harvard-MIT Mathematics Tournament, 6

The elliptic curve $y^2=x^3+1$ is tangent to a circle centered at $(4,0)$ at the point $(x_0,y_0)$. Determine the sum of all possible values of $x_0$.

2005 District Olympiad, 2

Tags: function , algebra
Find the functions $f:\mathbb{Z}\times \mathbb{Z}\to\mathbb{R}$ such that a) $f(x,y)\cdot f(y,z) \cdot f(z,x) = 1$ for all integers $x,y,z$; b) $f(x+1,x)=2$ for all integers $x$.

2012 USA Team Selection Test, 2

Tags: function , algebra
Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for every pair of real numbers $x$ and $y$, \[f(x+y^2)=f(x)+|yf(y)|.\]