This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2004 National High School Mathematics League, 15

Tags: function
$\alpha,\beta$ are two different solutions to the equation $4x^2-4tx+1=0(t\in\mathbb{R})$, the domain of definition of the function $f(x)=\frac{2x-t}{x^2+1}$ is $[\alpha,\beta](\alpha<\beta)$. [b](a)[/b] Find $g(t)=\max f(x)-\min f(x)$. [b](b)[/b] Prove: for $u_i\in\left(0,\frac{\pi}{2}\right)(i=1,2,3)$, if $\sin u_1+\sin u_2+\sin u_3=1$, then $\frac{1}{g(\tan u_1)}+\frac{1}{g(\tan u_2)}+\frac{1}{g(\tan u_3)}<\frac{3}{4}\sqrt6$.

1967 Putnam, A3

Consider polynomial functions $ax^2 -bx +c$ with integer coefficients which have two distinct zeros in the open interval $(0,1).$ Exhibit with proof the least positive integer value of $a$ for which such a polynomial exists.

2009 Ukraine National Mathematical Olympiad, 1

Solve the system of equations \[\{\begin{array}{cc}x^3=2y^3+y-2\\ \text{ } \\ y^3=2z^3+z-2 \\ \text{ } \\ z^3 = 2x^3 +x -2\end{array}\]

2010 Indonesia TST, 3

Determine all real numbers $ a$ such that there is a function $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ x\plus{}f(y)\equal{}af(y\plus{}f(x))\] for all real numbers $ x$ and $ y$. [i]Hery Susanto, Malang[/i]

2005 Moldova Team Selection Test, 4

Given functions $f,g:N^*\rightarrow N^*$, $g$ is surjective and $2f(n)^2=n^2+g(n)^2$, $\forall n>0$. Prove that if $|f(n)-n|\le2005\sqrt n$, $\forall n>0$, then $f(n)=n$ for infinitely many $n$.

2023 Macedonian Team Selection Test, Problem 3

Tags: algebra , function
Let $f:\mathbb{N} \rightarrow \mathbb{N}$ be a monotonically increasing function over the natural numbers, such that $f(f(n))=n^{2}$. What is the smallest, and what is the largest value that $f(2023)$ can take? [i]Proposed by Ilija Jovcheski[/i]

2012 Today's Calculation Of Integral, 788

For a function $f(x)=\ln (1+\sqrt{1-x^2})-\sqrt{1-x^2}-\ln x\ (0<x<1)$, answer the following questions: (1) Find $f'(x)$. (2) Sketch the graph of $y=f(x)$. (3) Let $P$ be a mobile point on the curve $y=f(x)$ and $Q$ be a point which is on the tangent at $P$ on the curve $y=f(x)$ and such that $PQ=1$. Note that the $x$-coordinate of $Q$ is les than that of $P$. Find the locus of $Q$.

2018 Latvia Baltic Way TST, P4

Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function that satisfies $$\sqrt{2f(x)}-\sqrt{2f(x)-f(2x)}\ge 2$$ for all real $x$. Prove for all real $x$: [i](a)[/i] $f(x)\ge 4$; [i](b)[/i] $f(x)\ge 7.$

2014 Cezar Ivănescu, 2

Let be a function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that satisfies the relation $$ \sqrt{x^2-x+1}\le f(x) e^{f(x)}\le \sqrt{x^2+x+1} , $$ for any positive real number $ x. $ Prove that [b]a)[/b] $ \lim_{x\to\infty } f(x)=\infty . $ [b]b)[/b] $ \lim_{x\to\infty } (1/x)^{1/f(x)} =1/e. $

1987 All Soviet Union Mathematical Olympiad, 460

The plot of the $y=f(x)$ function, being rotated by the (right) angle around the $(0,0)$ point is not changed. a) Prove that the equation $f(x)=x$ has the unique solution. b) Give an example of such a function.

1963 AMC 12/AHSME, 17

Tags: function , algebra , domain
The expression $\dfrac{\dfrac{a}{a+y}+\dfrac{y}{a-y}}{\dfrac{y}{a+y}-\dfrac{a}{a-y}}$, a real, $a\neq 0$, has the value $-1$ for: $\textbf{(A)}\ \text{all but two real values of }y \qquad \textbf{(B)}\ \text{only two real values of }y \qquad$ $\textbf{(C)}\ \text{all real values of }y \qquad \textbf{(D)}\ \text{only one real value of }y \qquad \textbf{(E)}\ \text{no real values of }y$

2012 NIMO Problems, 2

For which positive integer $n$ is the quantity $\frac{n}{3} + \frac{40}{n}$ minimized? [i]Proposed by Eugene Chen[/i]

2018 Taiwan TST Round 1, 1

Tags: function , algebra
Find all functions $ f: \mathbb{R} \to \mathbb{R} $ such that $$ f\left(f\left(x\right)+y\right) = f\left(x^2-y\right)+4\left(y-2\right)\left(f\left(x\right)+2\right) $$ holds for all $ x, y \in \mathbb{R} $

1992 IberoAmerican, 2

Given the positive real numbers $a_{1}<a_{2}<\cdots<a_{n}$, consider the function \[f(x)=\frac{a_{1}}{x+a_{1}}+\frac{a_{2}}{x+a_{2}}+\cdots+\frac{a_{n}}{x+a_{n}}\] Determine the sum of the lengths of the disjoint intervals formed by all the values of $x$ such that $f(x)>1$.

1974 IMO Longlists, 52

A fox stands in the centre of the field which has the form of an equilateral triangle, and a rabbit stands at one of its vertices. The fox can move through the whole field, while the rabbit can move only along the border of the field. The maximal speeds of the fox and rabbit are equal to $u$ and $v$, respectively. Prove that: (a) If $2u>v$, the fox can catch the rabbit, no matter how the rabbit moves. (b) If $2u\le v$, the rabbit can always run away from the fox.

1988 Czech And Slovak Olympiad IIIA, 1

Let $f$ be a representation of the set $M = \{1, 2,..., 1988\}$ into $M$. For any natural $n$, let $x_1 = f(1)$, $x_{n+1} = f(x_n)$. Find out if there exists $m$ such that $x_{2m} = x_m$.

1952 Miklós Schweitzer, 9

Let $ C$ denote the set of functions $ f(x)$, integrable (according to either Riemann or Lebesgue) on $ (a,b)$, with $ 0\le f(x)\le1$. An element $ \phi(x)\in C$ is said to be an "extreme point" of $ C$ if it can not be represented as the arithmetical mean of two different elements of $ C$. Find the extreme points of $ C$ and the functions $ f(x)\in C$ which can be obtained as "weak limits" of extreme points $ \phi_n(x)$ of $ C$. (The latter means that $ \lim_{n\to \infty}\int_a^b \phi_n(x)h(x)\,dx\equal{}\int_a^bf(x)h(x)\,dx$ holds for every integrable function $ h(x)$.)

2019 IMC, 6

Let $f,g:\mathbb R\to\mathbb R$ be continuous functions such that $g$ is differentiable. Assume that $(f(0)-g'(0))(g'(1)-f(1))>0$. Show that there exists a point $c\in (0,1)$ such that $f(c)=g'(c)$. [i]Proposed by Fereshteh Malek, K. N. Toosi University of Technology[/i]

2016 IMC, 1

Let $f : \left[ a, b\right]\rightarrow\mathbb{R}$ be continuous on $\left[ a, b\right]$ and differentiable on $\left( a, b\right)$. Suppose that $f$ has infinitely many zeros, but there is no $x\in \left( a, b\right)$ with $f(x)=f'(x)=0$. (a) Prove that $f(a)f(b)=0$. (b) Give an example of such a function on $\left[ 0, 1\right]$. (Proposed by Alexandr Bolbot, Novosibirsk State University)

2007 Princeton University Math Competition, 6

Tags: function
Find the number of ordered triplets of nonnegative integers $(m, n, p)$ such that $m+3n+5p \le 600$.

2004 Germany Team Selection Test, 3

Let $f(k)$ be the number of integers $n$ satisfying the following conditions: (i) $0\leq n < 10^k$ so $n$ has exactly $k$ digits (in decimal notation), with leading zeroes allowed; (ii) the digits of $n$ can be permuted in such a way that they yield an integer divisible by $11$. Prove that $f(2m) = 10f(2m-1)$ for every positive integer $m$. [i]Proposed by Dirk Laurie, South Africa[/i]

2000 VJIMC, Problem 2

Let $f:\mathbb N\to\mathbb R$ be given by $$f(n)=n^{\frac12\tau(n)}$$for $n\in\mathbb N=\{1,2,\ldots\}$ where $\tau(n)$ is the number of divisors of $n$. Show that $f$ is an injection.

2015 IMO Shortlist, N7

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer $k$, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called [i]$k$-good[/i] if $\gcd(f(m) + n, f(n) + m) \le k$ for all $m \neq n$. Find all $k$ such that there exists a $k$-good function. [i]Proposed by James Rickards, Canada[/i]

2014 Contests, 1

Let $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+$ by $h(x, y) = \gcd (f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in $x$ and $y$, prove that it must be constant.

2006 Victor Vâlcovici, 3

Tags: function , algebra
Let be four functions $ f,g,s,i:\mathbb{N}\longrightarrow\mathbb{N} $ such that $ s(x)=\max (f(x),g(x)) $ and $ i(x)=\min (f(x),g(x)) , $ for any natural number $ x. $ Prove that $ f=g $ if $ s $ is surjective and $ i $ injective.