Found problems: 4776
1954 Miklós Schweitzer, 4
[b]4.[/b] Find all functions of two variables defined over the entire plane that satisfy the relations $f(x+u,y+u)=f(x,y)+u$ and $f(xv,yv)= f(x,y) v$ for any real numbers $x,y,u,v$. [b](R.12)[/b]
2013 Romanian Master of Mathematics, 4
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
2019 LIMIT Category C, Problem 1
Which of the following functions are differentiable at $x=0$?
$\textbf{(A)}~f(x)=\begin{cases}\tan^{-1}\left(\frac1{|x|}\right)&\text{if }x\ne0\\\frac\pi2&\text{if }x=0\end{cases}$
$\textbf{(B)}~f(x)=|x|^{1/2}x$
$\textbf{(C)}~f(x)=\begin{cases}x^2\left|\cos\frac{\pi}x\right|&\text{if }x\ne0\\0&\text{if }x=0\end{cases}$
$\textbf{(D)}~\text{None of the above}$
2014 Korea National Olympiad, 2
How many one-to-one functions $f : \{1, 2, \cdots, 9\} \rightarrow \{1, 2, \cdots, 9\}$ satisfy (i) and (ii)?
(i) $f(1)>f(2)$, $f(9)<9$.
(ii) For each $i=3, 4, \cdots, 8$, if $f(1), \cdots, f(i-1)$ are smaller than $f(i)$, then $f(i+1)$ is also smaller than $f(i)$.
2006 Grigore Moisil Urziceni, 2
Consider a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that admits primitives. Prove that:
$ \text{(i)} $ Every term (function) of the sequence functions $ \left( h_n\right)_{n\ge 2}:\mathbb{R}\longrightarrow\mathbb{R} $ defined, for any natural number $ n $ as $ h_n(x)=x^nf\left( x^3 \right) , $ is primitivable.
$ \text{(ii)} $ The function $ \phi :\mathbb{R}\longrightarrow\mathbb{R} $ defined as
$$ \phi (x) =\left\{ \begin{matrix} e^{-1/x^2} f(x),& \quad x\neq 0 \\ 0,& \quad x=0 \end{matrix} \right. $$
is primitivable.
[i]Cristinel Mortici[/i]
2024 USA IMO Team Selection Test, 6
Find all functions $f\colon\mathbb R\to\mathbb R$ such that for all real numbers $x$ and $y$,
\[f(xf(y))+f(y)=f(x+y)+f(xy).\]
[i]Milan Haiman[/i]
2009 Harvard-MIT Mathematics Tournament, 9
How many functions $f : f\{1, 2, 3, 4, 5\}\longrightarrow\{1, 2, 3, 4, 5\}$ satisfy $f(f(x)) = f(x)$ for all $x\in\{ 1,2, 3, 4, 5\}$?
2004 South africa National Olympiad, 3
Find all real numbers $x$ such that $x\lfloor x\lfloor x\lfloor x\rfloor\rfloor\rfloor=88$. The notation $\lfloor x\rfloor$ means the greatest integer less than or equal to $x$.
2013 Romanian Masters In Mathematics, 1
Suppose two convex quadrangles in the plane $P$ and $P'$, share a point $O$ such that, for every line $l$ trough $O$, the segment along which $l$ and $P$ meet is longer then the segment along which $l$ and $P'$ meet. Is it possible that the ratio of the area of $P'$ to the area of $P$ is greater then $1.9$?
1992 IMO Longlists, 41
Let $S$ be a set of positive integers $n_1, n_2, \cdots, n_6$ and let $n(f)$ denote the number $n_1n_{f(1)} +n_2n_{f(2)} +\cdots+n_6n_{f(6)}$, where $f$ is a permutation of $\{1, 2, . . . , 6\}$. Let
\[\Omega=\{n(f) | f \text{ is a permutation of } \{1, 2, . . . , 6\} \} \]
Give an example of positive integers $n_1, \cdots, n_6$ such that $\Omega$ contains as many elements as possible and determine the number of elements of $\Omega$.
2005 China Team Selection Test, 2
Let $n$ be a positive integer, and $x$ be a positive real number. Prove that $$\sum_{k=1}^{n} \left( x \left[\frac{k}{x}\right] - (x+1)\left[\frac{k}{x+1}\right]\right) \leq n,$$ where $[x]$ denotes the largest integer not exceeding $x$.
2003 China Team Selection Test, 3
Suppose $A\subset \{(a_1,a_2,\dots,a_n)\mid a_i\in \mathbb{R},i=1,2\dots,n\}$. For any $\alpha=(a_1,a_2,\dots,a_n)\in A$ and $\beta=(b_1,b_2,\dots,b_n)\in A$, we define
\[ \gamma(\alpha,\beta)=(|a_1-b_1|,|a_2-b_2|,\dots,|a_n-b_n|), \] \[ D(A)=\{\gamma(\alpha,\beta)\mid\alpha,\beta\in A\}. \] Please show that $|D(A)|\geq |A|$.
1990 China National Olympiad, 3
A function $f(x)$ defined for $x\ge 0$ satisfies the following conditions:
i. for $x,y\ge 0$, $f(x)f(y)\le x^2f(y/2)+y^2f(x/2)$;
ii. there exists a constant $M$($M>0$), such that $|f(x)|\le M$ when $0\le x\le 1$.
Prove that $f(x)\le x^2$.
2019 Teodor Topan, 3
Let be two real numbers $ a<b, $ a natural number $ n\ge 2, $ and a continuous function $ f:[a,b]\longrightarrow (0,\infty ) $ whose image contains $ 1 $ and that admits a primitive $ F:[a,b]\longrightarrow [a,b] . $ Prove that there is a real number $ c\in (a,b) $ such that
$$ (\underbrace{F\circ\cdots\circ F}_{\text{n times}} )(b) -(\underbrace{F\circ\cdots\circ F}_{\text{n times}} )(a) =(f(c))^{n+1} (b-a) $$
[i]Vlad Mihaly[/i]
2003 District Olympiad, 2
Find all functions $\displaystyle f : \mathbb N^\ast \to M$ such that
\[ \displaystyle 1 + f(n) f(n+1) = 2 n^2 \left( f(n+1) - f(n) \right), \, \forall n \in \mathbb N^\ast , \]
in each of the following situations:
(a) $\displaystyle M = \mathbb N$;
(b) $\displaystyle M = \mathbb Q$.
[i]Dinu Şerbănescu[/i]
2012 Bogdan Stan, 1
Find the functions $ f:\mathbb{Z}\longrightarrow\mathbb{Z}_{\ge 0} $ that satisfy the following two conditions:
$ \text{(a)} f(m+n)=f(n)+f(m)+2mn,\quad\forall m,n\in\mathbb{Z} $
$ \text{(b)} f(f(1))-f(1) $ is a perfect square
[i]Marin Ionescu[/i]
2014 Romania National Olympiad, 2
Find all derivable functions that have real domain and codomain, and are equal to their second functional power.
2016 APMO, 5
Find all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ such that
$$(z + 1)f(x + y) = f(xf(z) + y) + f(yf(z) + x),$$
for all positive real numbers $x, y, z$.
[i]Fajar Yuliawan, Indonesia[/i]
2006 Romania Team Selection Test, 3
Let $x_1=1$, $x_2$, $x_3$, $\ldots$ be a sequence of real numbers such that for all $n\geq 1$ we have \[ x_{n+1} = x_n + \frac 1{2x_n} . \] Prove that \[ \lfloor 25 x_{625} \rfloor = 625 . \]
1984 Austrian-Polish Competition, 8
The functions $f_0,f_1 : (1,\infty) \to (1,\infty)$ are given by $ f_0(x) = 2x$ and$ f_1(x) =\frac{x}{x-1}$. Show that for any real numbers $a, b$ with $1 \le a < b$ there exist a positive integer $k$ and indices $i_1,i_2,...,i_k \in \{0,1\}$ such that $a <f_{i_k}(f_{i_{k-1}}(...(f_{i_j}(2))...))< b$.
2009 Germany Team Selection Test, 2
Let $ S\subseteq\mathbb{R}$ be a set of real numbers. We say that a pair $ (f, g)$ of functions from $ S$ into $ S$ is a [i]Spanish Couple[/i] on $ S$, if they satisfy the following conditions:
(i) Both functions are strictly increasing, i.e. $ f(x) < f(y)$ and $ g(x) < g(y)$ for all $ x$, $ y\in S$ with $ x < y$;
(ii) The inequality $ f\left(g\left(g\left(x\right)\right)\right) < g\left(f\left(x\right)\right)$ holds for all $ x\in S$.
Decide whether there exists a Spanish Couple [list][*] on the set $ S \equal{} \mathbb{N}$ of positive integers; [*] on the set $ S \equal{} \{a \minus{} \frac {1}{b}: a, b\in\mathbb{N}\}$[/list]
[i]Proposed by Hans Zantema, Netherlands[/i]
2025 Romania National Olympiad, 3
a) Let $a\in \mathbb{R}$ and $f \colon \mathbb{R} \to \mathbb{R}$ be a continuous function for which there exists an antiderivative $F \colon \mathbb{R} \to \mathbb{R} $, such that $F(x)+a\cdot f(x) \geq 0$, for any $x \in \mathbb{R}$, and$ \lim_{|x| \to \infty} \frac{F(x)}{e^{|\alpha \cdot x|}}=0$ holds for any $\alpha \in \mathbb{R}^*$. Prove that $F(x) \geq 0$ for all $x \in \mathbb{R}$.
b) Let $n\geq 2$ be a positive integer, $g \in \mathbb{R}[X]$, $g = X^n + a_1X^{n-1}+ \dots + a_{n-1}X+a_n$ be a polynomial with all of its roots being real, and $f \colon \mathbb{R} \to \mathbb{R}$ a polynomial function such that $f(x)+a_1\cdot f'(x)+a_2\cdot f^{(2)}(x)+\dots+a_n\cdot f^{(n)}(x) \geq 0$ for any $x \in \mathbb{R}$. Prove that $f(x) \geq 0$ for all $x \in \mathbb{R}$.
1990 IMO Longlists, 64
Given an $m$-element set $M$ and a $k$-element subset $K \subset M$. We call a function $f: K \to M$ has "path", if there exists an element $x_0 \in K$ such that $f(x_0) = x_0$, or there exists a chain $x_0, x_1, \ldots, x_j = x_0 \in K$ such that $_xi = f(x_{i-1})$ for $i = 1, 2, \ldots, j$. Find the number of functions $f: K \to M$ which have path.
2010 Iran MO (3rd Round), 1
[b]two variable ploynomial[/b]
$P(x,y)$ is a two variable polynomial with real coefficients. degree of a monomial means sum of the powers of $x$ and $y$ in it. we denote by $Q(x,y)$ sum of monomials with the most degree in $P(x,y)$.
(for example if $P(x,y)=3x^4y-2x^2y^3+5xy^2+x-5$ then $Q(x,y)=3x^4y-2x^2y^3$.)
suppose that there are real numbers $x_1$,$y_1$,$x_2$ and $y_2$ such that
$Q(x_1,y_1)>0$ , $Q(x_2,y_2)<0$
prove that the set $\{(x,y)|P(x,y)=0\}$ is not bounded.
(we call a set $S$ of plane bounded if there exist positive number $M$ such that the distance of elements of $S$ from the origin is less than $M$.)
time allowed for this question was 1 hour.
2005 Vietnam National Olympiad, 1
Find all function $ f: \mathbb R\to \mathbb R$ satisfying the condition:
\[ f(f(x \minus{} y)) \equal{} f(x)\cdot f(y) \minus{} f(x) \plus{} f(y) \minus{} xy
\]