This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2003 All-Russian Olympiad, 1

Let $\alpha , \beta , \gamma , \delta$ be positive numbers such that for all $x$, $\sin{\alpha x}+\sin {\beta x}=\sin {\gamma x}+\sin {\delta x}$. Prove that $\alpha =\gamma$ or $\alpha=\delta$.

2017 Canadian Mathematical Olympiad Qualification, 3

Determine all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the following equation for all $x, y \in \mathbb{R}$. $$(x+y)f(x-y) = f(x^2-y^2).$$

2004 Romania National Olympiad, 3

Let $n>2,n \in \mathbb{N}$ and $a>0,a \in \mathbb{R}$ such that $2^a + \log_2 a = n^2$. Prove that: \[ 2 \cdot \log_2 n>a>2 \cdot \log_2 n -\frac{1}{n} . \] [i]Radu Gologan[/i]

2013 ELMO Shortlist, 5

Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$. [i]Proposed by Evan Chen[/i]

1963 Putnam, B3

Find every twice-differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies the functional equation $$ f(x)^2 -f(y)^2 =f(x+y)f(x-y)$$ for all $x,y \in \mathbb{R}. $

1999 VJIMC, Problem 2

Let $a,b\in\mathbb R$, $a\le b$. Assume that $f:[a,b]\to[a,b]$ satisfies $f(x)-f(y)\le|x-y|$ for every $x,y\in[a,b]$. Choose an $x_1\in[a,b]$ and define $$x_{n+1}=\frac{x_n+f(x_n)}2,\qquad n=1,2,3,\ldots.$$Show that $\{x_n\}^\infty_{n=1}$ converges to some fixed point of $f$.

1998 National High School Mathematics League, 7

Tags: function
$f(x)$ is an even function with period of $2$. If $f(x)=x^{\frac{1}{1000}}$ when $x\in[0,1]$, then the order of $f\left(\frac{98}{19}\right),f\left(\frac{101}{17}\right),f\left(\frac{104}{15}\right)$ is________(from small to large).

1970 IMO Longlists, 32

Tags: function , geometry
Let there be given an acute angle $\angle AOB = 3\alpha$, where $\overline{OA}= \overline{OB}$. The point $A$ is the center of a circle with radius $\overline{OA}$. A line $s$ parallel to $OA$ passes through $B$. Inside the given angle a variable line $t$ is drawn through $O$. It meets the circle in $O$ and $C$ and the given line $s$ in $D$, where $\angle AOC = x$. Starting from an arbitrarily chosen position $t_0$ of $t$, the series $t_0, t_1, t_2, \ldots$ is determined by defining $\overline{BD_{i+1}}=\overline{OC_i}$ for each $i$ (in which $C_i$ and $D_i$ denote the positions of $C$ and $D$, corresponding to $t_i$). Making use of the graphical representations of $BD$ and $OC$ as functions of $x$, determine the behavior of $t_i$ for $i\to \infty$.

2008 Romania National Olympiad, 2

Let $ f: [0,1]\to\mathbb R$ be a derivable function, with a continuous derivative $ f'$ on $ [0,1]$. Prove that if $ f\left( \frac 12\right) \equal{} 0$, then \[ \int^1_0 \left( f'(x) \right)^2 dx \geq 12 \left( \int^1_0 f(x) dx \right)^2.\]

2004 Czech and Slovak Olympiad III A, 6

Tags: algebra , function
Find all functions $f:\mathbb R^+ \rightarrow \mathbb R^+$ such that for all positive real numbers $x,y$, \[x^2[f(x)+f(y)]=(x+y)f(yf(x)).\]

1959 Putnam, A7

If $f$ is a real-valued function of one real variable which has a continuous derivative on the closed interval $[a,b]$ and for which there is no $x\in [a,b]$ such that $f(x)=f'(x)=0$, then prove that there is a function $g$ with continuous first derivative on $[a,b]$ such that $fg'-f'g$ is positive on $[a,b].$

2011 Bogdan Stan, 4

Let be an open interval $ I $ and a convex function $ f:I\longrightarrow\mathbb{R} . $ Prove that the lateral derivatives of $ f $ are left-continuous on $ \mathbb{R} $ and also right-continuous on $ \mathbb{R} . $ [i]Marin Tolosi[/i]

2007 Today's Calculation Of Integral, 195

Find continuous functions $x(t),\ y(t)$ such that $\ \ \ \ \ \ \ \ \ x(t)=1+\int_{0}^{t}e^{-2(t-s)}x(s)ds$ $\ \ \ \ \ \ \ \ \ y(t)=\int_{0}^{t}e^{-2(t-s)}\{2x(s)+3y(s)\}ds$

2009 Baltic Way, 5

Tags: algebra , function
Let $f_0=f_1=1$ and $f_{i+2}=f_{i+1}+f_i$ for all $n\ge 0$. Find all real solutions to the equation \[x^{2010}=f_{2009}\cdot x+f_{2008}\]

2025 District Olympiad, P3

[list=a] [*] Let $a<b$ and $f:[a,b]\rightarrow\mathbb{R}$ be a strictly monotonous function such that $\int_a^b f(x) dx=0$. Show that $f(a)\cdot f(b)<0$. [*] Find all convergent sequences $(a_n)_{n\geq 1}$ for which there exists a scrictly monotonous function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $$\int_{a_{n-1}}^{a_n} f(x)dx = \int_{a_n}^{a_{n+1}} f(x)dx,\text{ for all }n\geq 2.$$

2012 Turkey MO (2nd round), 3

Find all non-decreasing functions from real numbers to itself such that for all real numbers $x,y$ $f(f(x^2)+y+f(y))=x^2+2f(y)$ holds.

2021 USAJMO, 1

Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for positive integers $a$ and $b,$ \[f(a^2 + b^2) = f(a)f(b) \text{ and } f(a^2) = f(a)^2.\]

2010 China Team Selection Test, 1

Let $G=G(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. Suppose $|V|=n$. A map $f:\,V\rightarrow\mathbb{Z}$ is called good, if $f$ satisfies the followings: (1) $\sum_{v\in V} f(v)=|E|$; (2) color arbitarily some vertices into red, one can always find a red vertex $v$ such that $f(v)$ is no more than the number of uncolored vertices adjacent to $v$. Let $m(G)$ be the number of good maps. Prove that if every vertex in $G$ is adjacent to at least one another vertex, then $n\leq m(G)\leq n!$.

2003 Miklós Schweitzer, 10

Let $X$ and $Y$ be independent random variables with "Saint-Petersburg" distribution, i.e. for any $k=1,2,\ldots$ their value is $2^k$ with probability $\frac{1}{2^k}$. Show that $X$ and $Y$ can be realized on a sufficiently big probability space such that there exists another pair of independent "Saint-Petersburg" random variables $(X', Y')$ on this space with the property that $X+Y=2X'+Y'I(Y'\le X')$ almost surely (here $I(A)$ denotes the indicator function of the event $A$). (translated by L. Erdős)

2018 CMIMC Number Theory, 6

Let $\phi(n)$ denote the number of positive integers less than or equal to $n$ that are coprime to $n$. Find the sum of all $1<n<100$ such that $\phi(n)\mid n$.

1986 IMO Longlists, 5

Tags: function , geometry
Let $ABC$ and $DEF$ be acute-angled triangles. Write $d = EF, e = FD, f = DE.$ Show that there exists a point $P$ in the interior of $ABC$ for which the value of the expression $X=d \cdot AP +e \cdot BP +f \cdot CP$ attains a minimum.

2025 Romanian Master of Mathematics, 4

Tags: algebra , function
Let $\mathbb{Z}$ denote the set of integers and $S \subset \mathbb{Z} $ be the set of integers that are at least $10^{100}$. Fix a positive integer $c$. Determine all functions $f: S \rightarrow \mathbb{Z} $ satisfying $f(xy+c)=f(x)+f(y)$, for all $x,y \in S$

VMEO III 2006 Shortlist, A7

Prove that for all $n\in\mathbb{Z}^+$, we have \[ \sum\limits_{p=1}^n\sum\limits_{q=1}^p\left\lfloor -\frac{1+\sqrt{8q+(2p-1)^2}}{2}\right\rfloor =-\frac{n(n+1)(n+2)}{3} \]

2013 Iran MO (3rd Round), 5

Consider a graph with $n$ vertices and $\frac{7n}{4}$ edges. (a) Prove that there are two cycles of equal length. (25 points) (b) Can you give a smaller function than $\frac{7n}{4}$ that still fits in part (a)? Prove your claim. We say function $a(n)$ is smaller than $b(n)$ if there exists an $N$ such that for each $n>N$ ,$a(n)<b(n)$ (At most 5 points) [i]Proposed by Afrooz Jabal'ameli[/i]

2024 Macedonian Mathematical Olympiad, Problem 3

Determine all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfy the equation $$f(f(x+y))=f(x+y)+f(x)f(y)-xy,$$ for any two real numbers $x$ and $y$.