This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2010 Germany Team Selection Test, 3

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

2008 Harvard-MIT Mathematics Tournament, 10

Determine the number of $ 8$-tuples of nonnegative integers $ (a_1,a_2,a_3,a_4,b_1,b_2,b_3,b_4)$ satisfying $ 0\le a_k\le k$, for each $ k \equal{} 1,2,3,4$, and $ a_1 \plus{} a_2 \plus{} a_3 \plus{} a_4 \plus{} 2b_1 \plus{} 3b_2 \plus{} 4b_3 \plus{} 5b_4 \equal{} 19$.

2022 IMC, 3

Let $p$ be a prime number. A flea is staying at point $0$ of the real line. At each minute, the flea has three possibilities: to stay at its position, or to move by $1$ to the left or to the right. After $p-1$ minutes, it wants to be at $0$ again. Denote by $f(p)$ the number of its strategies to do this (for example, $f(3) = 3$: it may either stay at $0$ for the entire time, or go to the left and then to the right, or go to the right and then to the left). Find $f(p)$ modulo $p$.

2012 District Olympiad, 4

A function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ has property $ \mathcal{F} , $ if for any real number $ a, $ there exists a $ b<a $ such that $ f(x)\le f(a), $ for all $ x\in (b,a) . $ [b]a)[/b] Give an example of a function with property $ \mathcal{F} $ that is not monotone on $ \mathbb{R} . $ [b]b)[/b] Prove that a continuous function that has property $ \mathcal{F} $ is nondecreasing.

2008 AMC 10, 20

The faces of a cubical die are marked with the numbers $ 1$, $ 2$, $ 2$, $ 3$, $ 3$, and $ 4$. The faces of a second cubical die are marked with the numbers $ 1$, $ 3$, $ 4$, $ 5$, $ 6$, and $ 8$. Both dice are thrown. What is the probability that the sum of the two top numbers will be $ 5$, $ 7$, or $ 9$ ? $ \textbf{(A)}\ \frac {5}{18} \qquad \textbf{(B)}\ \frac {7}{18} \qquad \textbf{(C)}\ \frac {11}{18} \qquad \textbf{(D)}\ \frac {3}{4} \qquad \textbf{(E)}\ \frac {8}{9}$

2018 China Team Selection Test, 4

Functions $f,g:\mathbb{Z}\to\mathbb{Z}$ satisfy $$f(g(x)+y)=g(f(y)+x)$$ for any integers $x,y$. If $f$ is bounded, prove that $g$ is periodic.

2010 Putnam, A6

Let $f:[0,\infty)\to\mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty}f(x)=0.$ Prove that $\displaystyle\int_0^{\infty}\frac{f(x)-f(x+1)}{f(x)}\,dx$ diverges.

2016 Iran Team Selection Test, 6

Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer $k$, a function $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ is called [i]$k$-good[/i] if $\gcd(f(m) + n, f(n) + m) \le k$ for all $m \neq n$. Find all $k$ such that there exists a $k$-good function. [i]Proposed by James Rickards, Canada[/i]

2009 Iran MO (3rd Round), 4

Does there exists two functions $f,g :\mathbb{R}\rightarrow \mathbb{R}$ such that: $\forall x\not =y : |f(x)-f(y)|+|g(x)-g(y)|>1$ Time allowed for this problem was 75 minutes.

2005 Moldova Team Selection Test, 2

Let $ a$, $ b$, $ c$ be positive reals such that $ a^4 \plus{} b^4 \plus{} c^4 \equal{} 3$. Prove that $ \sum\frac1{4 \minus{} ab}\leq1$, where the $ \sum$ sign stands for cyclic summation. [i]Alternative formulation:[/i] For any positive reals $ a$, $ b$, $ c$ satisfying $ a^4 \plus{} b^4 \plus{} c^4 \equal{} 3$, prove the inequality $ \frac{1}{4\minus{}bc}\plus{}\frac{1}{4\minus{}ca}\plus{}\frac{1}{4\minus{}ab}\leq 1$.

1991 China Team Selection Test, 1

Let real coefficient polynomial $f(x) = x^n + a_1 \cdot x^{n-1} + \ldots + a_n$ has real roots $b_1, b_2, \ldots, b_n$, $n \geq 2,$ prove that $\forall x \geq max\{b_1, b_2, \ldots, b_n\}$, we have \[f(x+1) \geq \frac{2 \cdot n^2}{\frac{1}{x-b_1} + \frac{1}{x-b_2} + \ldots + \frac{1}{x-b_n}}.\]

1972 IMO Shortlist, 1

$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.

2010 Romania Team Selection Test, 2

Let $n$ be a positive integer number and let $a_1, a_2, \ldots, a_n$ be $n$ positive real numbers. Prove that $f : [0, \infty) \rightarrow \mathbb{R}$, defined by \[f(x) = \dfrac{a_1 + x}{a_2 + x} + \dfrac{a_2 + x}{a_3 + x} + \cdots + \dfrac{a_{n-1} + x}{a_n + x} + \dfrac{a_n + x}{a_1 + x}, \] is a decreasing function. [i]Dan Marinescu et al.[/i]

2013 IMC, 1

Let $\displaystyle{z}$ be a complex number with $\displaystyle{\left| {z + 1} \right| > 2}$. Prove that $\displaystyle{\left| {{z^3} + 1} \right| > 1}$. [i]Proposed by Walther Janous and Gerhard Kirchner, Innsbruck.[/i]

KoMaL A Problems 2022/2023, A. 849

For real number $r$ let $f(r)$ denote the integer that is the closest to $r$ (if the fractional part of $r$ is $1/2$, let $f(r)$ be $r-1/2$). Let $a>b>c$ rational numbers such that for all integers $n$ the following is true: $f(na)+f(nb)+f(nc)=n$. What can be the values of $a$, $b$ and $c$? [i]Submitted by Gábor Damásdi, Budapest[/i]

2018 Mathematical Talent Reward Programme, MCQ: P 7

Tags: algebra , function
$A=\{1,2,3,4,5,6,7,8\} .$ How many functions $f: A \rightarrow A$ are there such that $f(1)<f(2)<f(3)$ [list=1] [*] ${{8}\choose{3}}$ [*] ${{8}\choose{3}}5^{8}$ [*] ${{8}\choose{3}} 8^{5}$ [*] $\frac{8 !}{3 !} $ [/list]

2008 Grigore Moisil Intercounty, 4

Given two rational numbers $ a,b, $ find the functions $ f:\mathbb{Q}\longrightarrow\mathbb{Q} $ that verify $$ f(x+a+f(y))=f(x+b)+y, $$ for any rational $ x,y. $ [i]Vasile Pop[/i]

2012 Pre-Preparation Course Examination, 3

Consider the set $\mathbb A=\{f\in C^1([-1,1]):f(-1)=-1,f(1)=1\}$. Prove that there is no function in this function space that gives us the minimum of $S=\int_{-1}^1x^2f'(x)^2dx$. What is the infimum of $S$ for the functions of this space?

2007 AIME Problems, 7

Let \[N= \sum_{k=1}^{1000}k(\lceil \log_{\sqrt{2}}k\rceil-\lfloor \log_{\sqrt{2}}k \rfloor).\] Find the remainder when N is divided by 1000. (Here $\lfloor x \rfloor$ denotes the greatest integer that is less than or equal to x, and $\lceil x \rceil$ denotes the least integer that is greater than or equal to x.)

2004 Gheorghe Vranceanu, 4

Let be three finite and nonempty sets $ A,B,C $ such that $ |A|=|C|\le |B| , $ and a bijection $ A\stackrel{\beta }{\longrightarrow } C. $ How many pairs of functions $ A\stackrel{f_2 }{\longrightarrow } B\stackrel{f_1 }{\longrightarrow } C $ that satisfy $ f_1\circ f_2=\beta $ are there?

2014 Saudi Arabia BMO TST, 4

Tags: algebra , function
Let $f :\mathbb{N} \rightarrow\mathbb{N}$ be an injective function such that $f(1) = 2,~ f(2) = 4$ and \[f(f(m) + f(n)) = f(f(m)) + f(n)\] for all $m, n \in \mathbb{N}$. Prove that $f(n) = n + 2$ for all $n \ge 2$.

2009 Romania Team Selection Test, 3

Given an integer $n\geq 2$ and a closed unit disc, evaluate the maximum of the product of the lengths of all $\frac{n(n-1)}{2}$ segments determined by $n$ points in that disc.

OMMC POTM, 2023 2

Find all functions $f$ from the set of reals to itself so that for all reals $x,y,$ $$f(x)f(f(x)+y) = f(x^2) + f(xy).$$ [i]Proposed by Culver Kwan[/i]

2002 China Team Selection Test, 2

Tags: algebra , function
Given an integer $k$. $f(n)$ is defined on negative integer set and its values are integers. $f(n)$ satisfies \[ f(n)f(n+1)=(f(n)+n-k)^2, \] for $n=-2,-3,\cdots$. Find an expression of $f(n)$.

2010 Today's Calculation Of Integral, 619

Consider a function $f(x)=\frac{\sin x}{9+16\sin ^ 2 x}\ \left(0\leq x\leq \frac{\pi}{2}\right).$ Let $a$ be the value of $x$ for which $f(x)$ is maximized. Evaluate $\int_a^{\frac{\pi}{2}} f(x)\ dx.$ [i]2010 Saitama University entrance exam/Mathematics[/i] Last Edited