Found problems: 4776
2019 USAJMO, 2
Let $\mathbb{Z}$ be the set of all integers. Find all pairs of integers $(a,b)$ for which there exist functions $f \colon \mathbb{Z}\rightarrow \mathbb{Z}$ and $g \colon \mathbb{Z} \rightarrow \mathbb{Z}$ satisfying
\[ f(g(x))=x+a \quad\text{and}\quad g(f(x))=x+b \]
for all integers $x$.
[i]Proposed by Ankan Bhattacharya[/i]
1962 Putnam, A2
Find every real-valued function $f$ whose domain is an interval $I$ (finite or infinite) having $0$ as a left-hand endpoint, such that for every positive $x\in I$ the average of $f$ over the closed interval $[0,x]$ is equal to $\sqrt{ f(0) f(x)}.$
2004 Alexandru Myller, 1
Find the number of self-maps of a set of $ 5 $ elements having the property that the preimage of any element of this set has $ 2 $ elements at most.
[i]Adrian Zanoschi[/i]
1989 AMC 12/AHSME, 18
The set of all numbers x for which \[x+\sqrt{x^{2}+1}-\frac{1}{x+\sqrt{x^{2}+1}}\] is a rational number is the set of all:
$\textbf{(A)}\ \text{ integers } x \qquad
\textbf{(B)}\ \text{ rational } x \qquad
\textbf{(C)}\ \text{ real } x\qquad
\textbf{(D)}\ x \text{ for which } \sqrt{x^2+1} \text{ is rational} \qquad
\textbf{(E)}\ x \text{ for which } x+\sqrt{x^2+1} \text{ is rational }$
2004 Purple Comet Problems, 12
If $f(x, y) = xy + 2x + y + 1$, find $f(f(2, f(3, 4)), 5)$.
1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 1
The numbers from 1 to 1996 are written down ------ 12345678910111213.... How many zeros are written?
A. 489
B. 699
C. 796
D. 996
E. None of these
2017 ISI Entrance Examination, 8
Let $k,n$ and $r$ be positive integers.
(a) Let $Q(x)=x^k+a_1x^{k+1}+\cdots+a_nx^{k+n}$ be a polynomial with real coefficients. Show that the function $\frac{Q(x)}{x^k}$ is strictly positive for all real $x$ satisfying
$$0<|x|<\frac1{1+\sum\limits_{i=1}^n |a_i|}$$
(b) Let $P(x)=b_0+b_1x+\cdots+b_rx^r$ be a non zero polynomial with real coefficients. Let $m$ be the smallest number such that $b_m \neq 0$. Prove that the graph of $y=P(x)$ cuts the $x$-axis at the origin (i.e., $P$ changes signs at $x=0$) if and only if $m$ is an odd integer.
2009 Indonesia TST, 1
Ati has $ 7$ pots of flower, ordered in $ P_1,P_2,P_3,P_4,P_5,P_6,P_7$. She wants to rearrange the position of those pots to $ B_1,B_2,B_2,B_3,B_4,B_5,B_6,B_7$ such that for every positive integer $ n<7$, $ B_1,B_2,\dots,B_n$ is not the permutation of $ P_1,P_2,\dots,P_7$. In how many ways can Ati do this?
1986 IMO Longlists, 40
Find the maximum value that the quantity $2m+7n$ can have such that there exist distinct positive integers $x_i \ (1 \leq i \leq m), y_j \ (1 \leq j \leq n)$ such that the $x_i$'s are even, the $y_j$'s are odd, and $\sum_{i=1}^{m} x_i +\sum_{j=1}^{n} y_j=1986.$
1975 Miklós Schweitzer, 6
Let $ f$ be a differentiable real function and let $ M$ be a positive real number. Prove that if \[ |f(x\plus{}t)\minus{}2f(x)\plus{}f(x\minus{}t)| \leq Mt^2 \; \textrm{for all}\ \;x\ \; \textrm{and}\ \;t\ , \] then \[ |f'(x\plus{}t)\minus{}f'(x)| \leq M|t|.\]
[i]J. Szabados[/i]
2007 Olympic Revenge, 1
Let $a$, $b$, $n$ be positive integers with $a,b > 1$ and $\gcd(a,b) = 1$. Prove that $n$ divides $\phi\left(a^{n}+b^{n}\right)$.
2011 Postal Coaching, 1
Let $X$ be the set of all positive real numbers. Find all functions $f : X \longrightarrow X$ such that
\[f (x + y) \ge f (x) + yf (f (x))\]
for all $x$ and $y$ in $X$.
2001 China Western Mathematical Olympiad, 1
Find all real numbers $ x$ such that $ \lfloor x^3 \rfloor \equal{} 4x \plus{} 3$.
2010 Putnam, A2
Find all differentiable functions $f:\mathbb{R}\to\mathbb{R}$ such that
\[f'(x)=\frac{f(x+n)-f(x)}n\]
for all real numbers $x$ and all positive integers $n.$
2012 ISI Entrance Examination, 8
Let $S = \{1,2,3,\ldots,n\}$. Consider a function $f\colon S\to S$. A subset $D$ of $S$ is said to be invariant if for all $x\in D$ we have $f(x)\in D$. The empty set and $S$ are also considered as invariant subsets. By $\deg (f)$ we define the number of invariant subsets $D$ of $S$ for the function $f$.
[b]i)[/b] Show that there exists a function $f\colon S\to S$ such that $\deg (f)=2$.
[b]ii)[/b] Show that for every $1\leq k\leq n$ there exists a function $f\colon S\to S$ such that $\deg (f)=2^{k}$.
1991 National High School Mathematics League, 4
Function $f(x)$ satisfies that $f(3+x)=f(3-x)$. Also, equation $f(x)=0$ has six different real roots, then the sum of these roots is
$\text{(A)}18\qquad\text{(B)}12\qquad\text{(C)}9\qquad\text{(D)}0$
2015 AMC 12/AHSME, 22
For each positive integer $n$, let $S(n)$ be the number of sequences of length $n$ consisting solely of the letters $A$ and $B$, with no more than three $A$s in a row and no more than three $B$s in a row. What is the remainder when $S(2015)$ is divided by $12$?
$\textbf{(A) }0\qquad\textbf{(B) }4\qquad\textbf{(C) }6\qquad\textbf{(D) }8\qquad\textbf{(E) }10$
2001 Romania Team Selection Test, 2
Prove that there is no function $f:(0,\infty )\rightarrow (0,\infty)$ such that
\[f(x+y)\ge f(x)+yf(f(x)) \]
for every $x,y\in (0,\infty )$.
1999 Hungary-Israel Binational, 3
Find all functions $ f:\mathbb{Q}\to\mathbb{R}$ that satisfy $ f(x\plus{}y)\equal{}f(x)f(y)\minus{}f(xy)\plus{}1$ for every $x,y\in\mathbb{Q}$.
2013 Federal Competition For Advanced Students, Part 2, 4
For a positive integer $n$, let $a_1, a_2, \ldots a_n$ be nonnegative real numbers such that for all real numbers $x_1>x_2>\ldots>x_n>0$ with $x_1+x_2+\ldots+x_n<1$, the inequality $\sum_{k=1}^na_kx_k^3<1$ holds. Show that \[na_1+(n-1)a_2+\ldots+(n-j+1)a_j+\ldots+a_n\leqslant\frac{n^2(n+1)^2}{4}.\]
PEN K Problems, 10
Find all functions $f: \mathbb{N}_{0}\to \mathbb{N}_{0}$ such that for all $n\in \mathbb{N}_{0}$: \[f(m+f(n))=f(f(m))+f(n).\]
2014 Taiwan TST Round 2, 2
Let $\mathbb{Z}_{\ge 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\ge 0} \rightarrow \mathbb{Z}_{\ge 0} $ satisfying the relation
\[ f(f(f(n))) = f(n+1 ) +1 \]
for all $ n\in \mathbb{Z}_{\ge 0}$.
2012 IMO Shortlist, A6
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function, and let $f^m$ be $f$ applied $m$ times. Suppose that for every $n \in \mathbb{N}$ there exists a $k \in \mathbb{N}$ such that $f^{2k}(n)=n+k$, and let $k_n$ be the smallest such $k$. Prove that the sequence $k_1,k_2,\ldots $ is unbounded.
[i]Proposed by Palmer Mebane, United States[/i]
Oliforum Contest II 2009, 1
Find all non empty subset $ S$ of $ \mathbb{N}: \equal{} \{0,1,2,\ldots\}$ such that $ 0 \in S$ and exist two function $ h(\cdot): S \times S \to S$ and $ k(\cdot): S \to S$ which respect the following rules:
i) $ k(x) \equal{} h(0,x)$ for all $ x \in S$
ii) $ k(0) \equal{} 0$
iii) $ h(k(x_1),x_2) \equal{} x_1$ for all $ x_1,x_2 \in S$.
[i](Pierfrancesco Carlucci)[/i]
1999 Moldova Team Selection Test, 3
The fuction $f(0,\infty)\rightarrow\mathbb{R}$ verifies $f(x)+f(y)=2f(\sqrt{xy}), \forall x,y>0$. Show that for every positive integer $n>2$ the following relation takes place $$f(x_1)+f(x_2)+\ldots+f(x_n)=nf(\sqrt[n]{x_1x_2\ldots x_n}),$$ for every positive integers $x_1,x_2,\ldots,x_n$.