Found problems: 4776
1997 Romania National Olympiad, 4
Let two bijective and continuous functions$f,g: \mathbb{R}\to\mathbb{R}$ such that : $\left(f\circ g^{-1}\right)(x)+\left(g\circ f^{-1}\right)(x)=2x$ for any real $x$. Show that If we have a value $x_{0}\in\mathbb{R}$ such that $f(x_{0})=g(x_{0})$, then $f=g$.
2012 India Regional Mathematical Olympiad, 3
Let $a$ and $b$ be positive real numbers such that $a+b=1$. Prove that $a^ab^b+a^bb^a\le 1$.
1986 Vietnam National Olympiad, 2
Find all $ n > 1$ such that the inequality \[ \sum_{i\equal{}1}^nx_i^2\ge x_n\sum_{i\equal{}1}^{n\minus{}1}x_i\] holds for all real numbers $ x_1$, $ x_2$, $ \ldots$, $ x_n$.
1991 Greece National Olympiad, 1
Prove that there is no function $f: \mathbb{Z}\to\mathbb{Z}$ such that $f(f(x))=x+1$, for all $x\in\mathbb{Z}$.
2025 India STEMS Category C, 4
Does there exist a function $f:[0,1]\rightarrow (0,\infty)$ such that [list]
[*]$f$ is differentiable on $[0,1]$
[*] It's derivative $f'$ is continuous on $[0,1]$.
[*] $(f'(x))^3-x^{\frac{1}{3}}>6(1-f(x)^{\frac{1}{5}})$ for all $x\in [0,1]$.
[*] $f(1)=1$
[/list]
[i]Proposed by Medhansh Tripathi[/i]
2014 India Regional Mathematical Olympiad, 5
Let $a,b,c$ be positive real numbers such that
\[ \cfrac{1}{1+a}+\cfrac{1}{1+b}+\cfrac{1}{1+c}\le 1. \]
Prove that $(1+a^2)(1+b^2)(1+c^2)\ge 125$. When does equality hold?
1967 IMO Longlists, 50
The function $\varphi(x,y,z)$ defined for all triples $(x,y,z)$ of real numbers, is such that there are two functions $f$ and $g$ defined for all pairs of real numbers, such that
\[\varphi(x,y,z) = f(x+y,z) = g(x,y+z)\]
for all real numbers $x,y$ and $z.$ Show that there is a function $h$ of one real variable, such that
\[\varphi(x,y,z) = h(x+y+z)\]
for all real numbers $x,y$ and $z.$
2002 Czech-Polish-Slovak Match, 3
Let $S = \{1, 2, \cdots , n\}, n \in N$. Find the number of functions $f : S \to S$ with the property that $x + f(f(f(f(x)))) = n + 1$ for all $x \in S$?
2007 Today's Calculation Of Integral, 178
Let $f(x)$ be a differentiable function such that $f'(x)+f(x)=4xe^{-x}\sin 2x,\ \ f(0)=0.$
Find $\lim_{n\to\infty}\sum_{k=1}^{n}f(k\pi).$
2024 Thailand Mathematical Olympiad, 3
Let $c$ be a positive real number. Find all functions $f:\mathbb{R}^+\to\mathbb{R}^+$ that satisfy $$x^2f(xf(y))f(x)f(y)=c$$ for all positive reals $x$ and $y$.
1984 National High School Mathematics League, 5
If $a>0,a\neq1$, $F(x)$ is an odd function. $G(x)=F(x)\cdot(\frac{1}{a^x-1}+\frac{1}{2})$, then $G(x)$ is
$\text{(A)}$ odd function
$\text{(B)}$ even function
$\text{(C)}$ not odd or even function
$\text{(D)}$ not sure
1992 IMTS, 4
Prove that if $f$ is a non-constant real-valued function such that for all real $x$, $f(x+1) + f(x-1) = \sqrt{3} f(x)$, then $f$ is periodic. What is the smallest $p$, $p > 0$ such that $f(x+p) = f(x)$ for all $x$?
PEN E Problems, 14
Prove that there do not exist polynomials $ P$ and $ Q$ such that
\[ \pi(x)\equal{}\frac{P(x)}{Q(x)}\]
for all $ x\in\mathbb{N}$.
2001 IMO Shortlist, 1
Let $ T$ denote the set of all ordered triples $ (p,q,r)$ of nonnegative integers. Find all functions $ f: T \rightarrow \mathbb{R}$ satisfying
\[ f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\
1 + \frac{1}{6}(f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\
+ f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\
+ f(p,q + 1,r - 1) + f(p,q - 1,r + 1)) & \text{otherwise} \end{cases}
\]
for all nonnegative integers $ p$, $ q$, $ r$.
1993 Turkey MO (2nd round), 3
$n\in{Z^{+}}$ and $A={1,\ldots ,n}$. $f: N\rightarrow N$ and $\sigma: N\rightarrow N$ are two permutations, if there is one $k\in A$ such that $(f\circ\sigma)(1),\ldots ,(f\circ\sigma)(k)$ is increasing and $(f\circ\sigma)(k),\ldots ,(f\circ\sigma)(n)$ is decreasing sequences we say that $f$ is good for $\sigma$. $S_\sigma$ shows the set of good functions for $\sigma$.
a) Prove that, $S_\sigma$ has got $2^{n-1}$ elements for every $\sigma$ permutation.
b)$n\geq 4$, prove that there are permutations $\sigma$ and $\tau$ such that, $S_{\sigma}\cap S_{\tau}=\phi$
.
2009 ISI B.Math Entrance Exam, 3
Let $1,2,3,4,5,6,7,8,9,11,12,\cdots$ be the sequence of all positive integers which do not contain the digit zero. Write $\{a_n\}$ for this sequence. By comparing with a geometric series, show that $\sum_{k=1}^n \frac{1}{a_k} < 90$.
2008 Poland - Second Round, 3
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ for which the equality
\[f(f(x)\minus{}y)\equal{}f(x)\plus{}f(f(y)\minus{}f(\minus{}x))\plus{}x\]
holds for all real $x,y$.
2011 Pre-Preparation Course Examination, 5
suppose that $v(x)=\sum_{p\le x,p\in \mathbb P}log(p)$ (here $\mathbb P$ denotes the set of all positive prime numbers). prove that the two statements below are equivalent:
[b]a)[/b] $v(x) \sim x$ when $x \longrightarrow \infty$
[b]b)[/b] $\pi (x) \sim \frac{x}{ln(x)}$ when $x \longrightarrow \infty$. (here $\pi (x)$ is number of the prime numbers less than or equal to $x$).
2004 Gheorghe Vranceanu, 3
Let be a real number $ r $ and two functions $ f:[r,\infty )\longrightarrow\mathbb{R} , F_1:(r,\infty )\longrightarrow\mathbb{R} $ satisfying the following two properties.
$ \text{(i)} f $ has Darboux's intermediate value property.
$ \text{(ii)} F_1$ is differentiable and $ F'_1=f\bigg|_{(r,\infty )} $
[b]1)[/b] Provide an example of what $ f,F_1 $ could be if $ f $ hasn't a lateral limit at $ r, $ and $ F_1 $ has lateral limit at $ r. $
Moreover, if $ f $ has lateral limit at $ r, $ show that
[b]2)[/b] $ F_1 $ has a finite lateral limit at $ r. $
[b]3)[/b] the function $ F:[r,\infty )\longrightarrow\mathbb{R} $ defined as
$$ F(x)=\left\{ \begin{matrix} F_1(x) ,& \quad x\in (r,\infty ) \\ \lim_{\stackrel{x\to r}{x>r}} F_1(x), & \quad x=r \end{matrix} \right. $$
is a primitive of $ f. $
2005 India National Olympiad, 6
Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that \[ f(x^2 + yf(z)) = xf(x) + zf(y) , \] for all $x, y, z \in \mathbb{R}$.
2016 KOSOVO TST, 4
$f:R->R$ such that :
$f(1)=1$ and for any $x\in R$
i) $f(x+5)\geq f(x)+5$
ii)$f(x+1)\leq f(x)+1$
If $g(x)=f(x)+1-x$ find g(2016)
2019 Olympic Revenge, 5
Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $$f(n) = \sum \frac{(1+\sum_{i=1}^{n} t_i)!}{(1+t_1) \cdot \prod_{i=1}^{n} (t_i!) }$$
where the sum runs through all $n$-tuples such that $\sum_{j=1}^{n}j \cdot t_j=n$ and $t_j \ge 0$ for all $1 \le j \le n$.
Given a prime $p$ greater than $3$, prove that $$\sum_{1 \le i < j <k \le p-1 } \frac{f(i)}{i \cdot j \cdot k} \equiv \sum_{1 \le i < j <k \le p-1 } \frac{2^i}{i \cdot j \cdot k} \pmod{p}.$$
1994 Putnam, 3
Find the set of all real numbers $k$ with the following property: For any positive, differentiable function $f$ that satisfies $f^{\prime}(x) > f(x)$ for all $x,$ there is some number $N$ such that $f(x) > e^{kx}$ for all $x > N.$
2010 Contests, 4
Determine whether there exists a polynomial $f(x_1, x_2)$ with two variables, with integer coefficients, and two points $A=(a_1, a_2)$ and $B=(b_1, b_2)$ in the plane, satisfying the following conditions:
(i) $A$ is an integer point (i.e $a_1$ and $a_2$ are integers);
(ii) $|a_1-b_1|+|a_2-b_2|=2010$;
(iii) $f(n_1, n_2)>f(a_1, a_2)$ for all integer points $(n_1, n_2)$ in the plane other than $A$;
(iv) $f(x_1, x_2)>f(b_1, b_2)$ for all integer points $(x_1, x_2)$ in the plane other than $B$.
[i]Massimo Gobbino, Italy[/i]
2003 Turkey Team Selection Test, 4
Find the least
a. positive real number
b. positive integer
$t$ such that the equation $(x^2+y^2)^2 + 2tx(x^2 + y^2) = t^2y^2$ has a solution where $x,y$ are positive integers.