This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2010 Contests, 3

Tags: limit , algebra , function
Find all functions $f: \mathbb R \rightarrow \mathbb R$ such that \[f(x+xy+f(y)) = \left(f(x)+\frac{1}{2}\right) \left(f(y)+\frac{1}{2}\right)\] holds for all real numbers $x,y$.

2018 Kazakhstan National Olympiad, 3

Tags: function , algebra
Is there exist a function $f:\mathbb {N}\to \mathbb {N}$ with for $\forall m,n \in \mathbb {N}$ $$f\left(mf\left(n\right)\right)=f\left(m\right)f\left(m+n\right)+n ?$$

2005 India IMO Training Camp, 2

Find all functions $ f: \mathbb{N^{*}}\to \mathbb{N^{*}}$ satisfying \[ \left(f^{2}\left(m\right)+f\left(n\right)\right) \mid \left(m^{2}+n\right)^{2}\] for any two positive integers $ m$ and $ n$. [i]Remark.[/i] The abbreviation $ \mathbb{N^{*}}$ stands for the set of all positive integers: $ \mathbb{N^{*}}=\left\{1,2,3,...\right\}$. By $ f^{2}\left(m\right)$, we mean $ \left(f\left(m\right)\right)^{2}$ (and not $ f\left(f\left(m\right)\right)$). [i]Proposed by Mohsen Jamali, Iran[/i]

1983 Bulgaria National Olympiad, Problem 6

Let $a,b,c>0$ satisfy for all integers $n$, we have $$\lfloor an\rfloor+\lfloor bn\rfloor=\lfloor cn\rfloor$$Prove that at least one of $a,b,c$ is an integer.

2005 China Team Selection Test, 1

Find all positive integers $m$ and $n$ such that the inequality: \[ [ (m+n) \alpha ] + [ (m+n) \beta ] \geq [ m \alpha ] + [n \beta] + [ n(\alpha+\beta)] \] is true for any real numbers $\alpha$ and $\beta$. Here $[x]$ denote the largest integer no larger than real number $x$.

1960 Czech and Slovak Olympiad III A, 4

Determine the (real) domain of a function $$y=\sqrt{1-\frac{x}{4}|x|+\sqrt{1-\frac{x}{2}|x|\,}\,}-\sqrt{1-\frac{x}{4}|x|-\sqrt{1-\frac{x}{2}|x|\,}\,}$$ and draw its graph.

2012 ELMO Shortlist, 3

Prove that any polynomial of the form $1+a_nx^n + a_{n+1}x^{n+1} + \cdots + a_kx^k$ ($k\ge n$) has at least $n-2$ non-real roots (counting multiplicity), where the $a_i$ ($n\le i\le k$) are real and $a_k\ne 0$. [i]David Yang.[/i]

2009 AIME Problems, 13

The terms of the sequence $ (a_i)$ defined by $ a_{n \plus{} 2} \equal{} \frac {a_n \plus{} 2009} {1 \plus{} a_{n \plus{} 1}}$ for $ n \ge 1$ are positive integers. Find the minimum possible value of $ a_1 \plus{} a_2$.

1988 IMO Shortlist, 26

A function $ f$ defined on the positive integers (and taking positive integers values) is given by: $ \begin{matrix} f(1) \equal{} 1, f(3) \equal{} 3 \\ f(2 \cdot n) \equal{} f(n) \\ f(4 \cdot n \plus{} 1) \equal{} 2 \cdot f(2 \cdot n \plus{} 1) \minus{} f(n) \\ f(4 \cdot n \plus{} 3) \equal{} 3 \cdot f(2 \cdot n \plus{} 1) \minus{} 2 \cdot f(n), \end{matrix}$ for all positive integers $ n.$ Determine with proof the number of positive integers $ \leq 1988$ for which $ f(n) \equal{} n.$

2004 China National Olympiad, 1

For a given real number $a$ and a positive integer $n$, prove that: i) there exists exactly one sequence of real numbers $x_0,x_1,\ldots,x_n,x_{n+1}$ such that \[\begin{cases} x_0=x_{n+1}=0,\\ \frac{1}{2}(x_i+x_{i+1})=x_i+x_i^3-a^3,\ i=1,2,\ldots,n.\end{cases}\] ii) the sequence $x_0,x_1,\ldots,x_n,x_{n+1}$ in i) satisfies $|x_i|\le |a|$ where $i=0,1,\ldots,n+1$. [i]Liang Yengde[/i]

2020 ITAMO, 5

Le $S$ be the set of positive integers greater than or equal to $2$. A function $f: S\rightarrow S$ is italian if $f$ satifies all the following three conditions: 1) $f$ is surjective 2) $f$ is increasing in the prime numbers(that is, if $p_1<p_2$ are prime numbers, then $f(p_1)<f(p_2)$) 3) For every $n\in S$ the number $f(n)$ is the product of $f(p)$, where $p$ varies among all the primes which divide $n$ (For instance, $f(360)=f(2^3\cdot 3^2\cdot 5)=f(2)\cdot f(3)\cdot f(5)$). Determine the maximum and the minimum possible value of $f(2020)$, when $f$ varies among all italian functions.

2006 International Zhautykov Olympiad, 1

Solve in positive integers the equation \[ n \equal{} \varphi(n) \plus{} 402 , \] where $ \varphi(n)$ is the number of positive integers less than $ n$ having no common prime factors with $ n$.

2006 China Team Selection Test, 2

Given three positive real numbers $ x$, $ y$, $ z$ such that $ x \plus{} y \plus{} z \equal{} 1$, prove that $ \frac {xy}{\sqrt {xy \plus{} yz}} \plus{} \frac {yz}{\sqrt {yz \plus{} zx}} \plus{} \frac {zx}{\sqrt {zx \plus{} xy}} \le \frac {\sqrt {2}}{2}$.

2005 Romania Team Selection Test, 3

A sequence of real numbers $\{a_n\}_n$ is called a [i]bs[/i] sequence if $a_n = |a_{n+1} - a_{n+2}|$, for all $n\geq 0$. Prove that a bs sequence is bounded if and only if the function $f$ given by $f(n,k)=a_na_k(a_n-a_k)$, for all $n,k\geq 0$ is the null function. [i]Mihai Baluna - ISL 2004[/i]

2023 Chile Classification NMO Juniors, 3

Tags: function , algebra
The following light grid is given: \begin{tabular}{cccc} o & o & o & o \\ o & o & o & o \\ o & o & o & o \\ o & o & o & o \end{tabular} where `o` represents a switched-off light and `•` represents a switched-on light. Each time a light is pressed, it toggles its state (on/off) as well as the state of its four adjacent neighbors (left, right, above, below). The bottom edge lights are considered to be immediately above the top edge lights, and the same applies to the lateral edges.The right figure illustrates the effect of pressing a light in a corner. Pressing a certain combination of lights results in all lights turning on. Prove that all lights must have been pressed at least once.

1979 Miklós Schweitzer, 10

Prove that if $ a_i(i=1,2,3,4)$ are positive constants, $ a_2-a_4 > 2$, and $ a_1a_3-a_2 > 2$, then the solution $ (x(t),y(t))$ of the system of differential equations \[ \.{x}=a_1-a_2x+a_3xy,\] \[ \.{y}=a_4x-y-a_3xy \;\;\;(x,y \in \mathbb{R}) \] with the initial conditions $ x(0)=0, y(0) \geq a_1$ is such that the function $ x(t)$ has exactly one strict local maximum on the interval $ [0, \infty)$. [i]L. Pinter, L. Hatvani[/i]

1988 IMO Longlists, 79

Let $ ABC$ be an acute-angled triangle. Let $ L$ be any line in the plane of the triangle $ ABC$. Denote by $ u$, $ v$, $ w$ the lengths of the perpendiculars to $ L$ from $ A$, $ B$, $ C$ respectively. Prove the inequality $ u^2\cdot\tan A \plus{} v^2\cdot\tan B \plus{} w^2\cdot\tan C\geq 2\cdot S$, where $ S$ is the area of the triangle $ ABC$. Determine the lines $ L$ for which equality holds.

2011 N.N. Mihăileanu Individual, 3

Let $ f:\mathbb{R}\longrightarrow\mathbb{R} $ be a function having the property that $$ f(f(x))=f(x)-\frac{1}{4}x +1, $$ for all real numbers $ x. $ [b]a)[/b] Prove that $ f $ is increasing. [b]b)[/b] Show that the equation $ f(x)=ax $ has at least a real solution in $ x, $ for any real number $ a\ge 1. $ [b]c)[/b] Calculate $ \lim_{x\to\infty } \frac{f(x)}{x} $ supposing that it exists, it's finite, and that $ \lim_{x\to\infty } f(f(x))=\infty . $

2012 Indonesia TST, 1

Let $P$ be a polynomial with real coefficients. Find all functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that there exists a real number $t$ such that \[f(x+t) - f(x) = P(x)\] for all $x \in \mathbb{R}$.

1990 IMO Longlists, 54

Tags: algebra , function
Let $M = \{1, 2, \ldots, n\}$ and $\phi : M \to M$ be a bijection. (i) Prove that there exist bijections $\phi_1, \phi_2 : M \to M$ such that $\phi_1 \cdot \phi_2 = \phi , \phi_1^2 =\phi_2^2=E$, where $E$ is the identity mapping. (ii) Prove that the conclusion in (i) is also true if $M$ is the set of all positive integers.

2020 European Mathematical Cup, 4

Let $\mathbb{R^+}$ denote the set of all positive real numbers. Find all functions $f: \mathbb{R^+}\rightarrow \mathbb{R^+}$ such that $$xf(x + y) + f(xf(y) + 1) = f(xf(x))$$ for all $x, y \in\mathbb{R^+}.$ [i]Proposed by Amadej Kristjan Kocbek, Jakob Jurij Snoj[/i]

1968 IMO Shortlist, 26

Let $f$ be a real-valued function defined for all real numbers, such that for some $a>0$ we have \[ f(x+a)={1\over2}+\sqrt{f(x)-f(x)^2} \] for all $x$. Prove that $f$ is periodic, and give an example of such a non-constant $f$ for $a=1$.

2025 Malaysian IMO Training Camp, 4

Tags: function , algebra
Find all functions $f:\mathbb R\to\mathbb R$ such that \[f(x^2)+2xf(y)=yf(x)+xf(x+y).\] [i](Proposed by Yeoh Yi Shuen)[/i]

2011 All-Russian Olympiad, 1

Given are two distinct monic cubics $F(x)$ and $G(x)$. All roots of the equations $F(x)=0$, $G(x)=0$ and $F(x)=G(x)$ are written down. There are eight numbers written. Prove that the greatest of them and the least of them cannot be both roots of the polynomial $F(x)$.

2011 AMC 12/AHSME, 19

At a competition with $N$ players, the number of players given elite status is equal to \[2^{1+\lfloor\log_2{(N-1)}\rfloor} - N. \] Suppose that $19$ players are given elite status. What is the sum of the two smallest possible values of $N$? $ \textbf{(A)}\ 38\qquad \textbf{(B)}\ 90 \qquad \textbf{(C)}\ 154 \qquad \textbf{(D)}\ 406 \qquad \textbf{(E)}\ 1024$