This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2013 Iran MO (3rd Round), 3

Real function $f$ [b]generates[/b] real function $g$ if there exists a natural $k$ such that $f^k=g$ and we show this by $f \rightarrow g$. In this question we are trying to find some properties for relation $\rightarrow$, for example it's trivial that if $f \rightarrow g$ and $g \rightarrow h$ then $f \rightarrow h$.(transitivity) (a) Give an example of two real functions $f,g$ such that $f\not = g$ ,$f\rightarrow g$ and $g\rightarrow f$. (b) Prove that for each real function $f$ there exists a finite number of real functions $g$ such that $f \rightarrow g$ and $g \rightarrow f$. (c) Does there exist a real function $g$ such that no function generates it, except for $g$ itself? (d) Does there exist a real function which generates both $x^3$ and $x^5$? (e) Prove that if a function generates two polynomials of degree 1 $P,Q$ then there exists a polynomial $R$ of degree 1 which generates $P$ and $Q$. Time allowed for this problem was 75 minutes.

2012 Today's Calculation Of Integral, 798

Denote by $C,\ l$ the graphs of the cubic function $C: y=x^3-3x^2+2x$, the line $l: y=ax$. (1) Find the range of $a$ such that $C$ and $l$ have intersection point other than the origin. (2) Denote $S(a)$ by the area bounded by $C$ and $l$. If $a$ move in the range found in (1), then find the value of $a$ for which $S(a)$ is minimized. 50 points

2017 Iran Team Selection Test, 4

A $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ where $h_i\left(x_1,x_2, \cdots , x_n\right)$ are $n$ variable polynomials with real coefficients is called [i]good[/i] if the following condition holds: For any $n$ functions $f_1,f_2, \cdots ,f_n : \mathbb R \to \mathbb R$ if for all $1 \le i \le n+1$, $P_i(x)=h_i \left(f_1(x),f_2(x), \cdots, f_n(x) \right)$ is a polynomial with variable $x$, then $f_1(x),f_2(x), \cdots, f_n(x)$ are polynomials. $a)$ Prove that for all positive integers $n$, there exists a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that the degree of all $h_i$ is more than $1$. $b)$ Prove that there doesn't exist any integer $n>1$ that for which there is a [i]good[/i] $n+1$-tuple $\left(h_1,h_2, \cdots, h_{n+1}\right)$ such that all $h_i$ are symmetric polynomials. [i]Proposed by Alireza Shavali[/i]

2007 AMC 12/AHSME, 9

A function $ f$ has the property that $ f(3x \minus{} 1) \equal{} x^{2} \plus{} x \plus{} 1$ for all real numbers $ x$. What is $ f(5)$? $ \textbf{(A)}\ 7 \qquad \textbf{(B)}\ 13 \qquad \textbf{(C)}\ 31 \qquad \textbf{(D)}\ 111 \qquad \textbf{(E)}\ 211$

2007 Gheorghe Vranceanu, 3

Given a function $ f:\mathbb{N}\longrightarrow\mathbb{N} , $ find the necessary and sufficient condition that makes the sequence $$ \left(\left( 1+\frac{(-1)^{f(n)}}{n+1} \right)^{(-1)^{-f(n+1)}\cdot(n+2)}\right)_{n\ge 1} $$ to be monotone.

2008 MiklĂłs Schweitzer, 10

Tags: vector , function
Let $V$ be the set of non-collinear pairs of vectors in $\mathbb{R}^3$, and $H$ be the set of lines passing through the origin. Is is true that for every continuous map $f\colon V\rightarrow H$ there exists a continuous map $g\colon V\rightarrow \mathbb{R}^3\,\backslash\,\{ 0\}$ such that $g(v)\in f(v)$ for all $v\in V$? (translated by MiklĂłs MarĂłti)

PEN M Problems, 21

In the sequence $1, 0, 1, 0, 1, 0, 3, 5, \cdots$, each member after the sixth one is equal to the last digit of the sum of the six members just preceeding it. Prove that in this sequence one cannot find the following group of six consecutive members: \[0, 1, 0, 1, 0, 1\]

2011 IMC, 5

Let $n$ be a positive integer and let $V$ be a $(2n-1)$-dimensional vector space over the two-element field. Prove that for arbitrary vectors $v_1,\dots,v_{4n-1} \in V,$ there exists a sequence $1\leq i_1<\dots<i_{2n}\leq 4n-1$ of indices such that $v_{i_1}+\dots+v_{i_{2n}}=0.$

2018 Rio de Janeiro Mathematical Olympiad, 3

Let $n$ and $k$ be positive integers. A function $f : \{1, 2, 3, 4, \dots , kn - 1, kn\} \to \{1, \cdots , 5\}$ is [i]good[/i] if $f(j + k) - f(j)$ is multiple of $k$ for every $j = 1, 2. \cdots , kn - k$. [b](a)[/b] Prove that, if $k = 2$, then the number of good functions is a perfect square for every positive integer $n$. [b](b)[/b] Prove that, if $k = 3$, then the number of good functions is a perfect cube for every positive integer $n$.

2002 Moldova National Olympiad, 1

Consider the real numbers $ a\ne 0,b,c$ such that the function $ f(x) \equal{} ax^2 \plus{} bx \plus{} c$ satisfies $ |f(x)|\le 1$ for all $ x\in [0,1]$. Find the greatest possible value of $ |a| \plus{} |b| \plus{} |c|$.

PEN K Problems, 7

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(n))+f(n)=2n+2001 \text{ or }2n+2002.\]

2018 Ramnicean Hope, 3

[b]a)[/b] Let $ u $ be a polynom in $ \mathbb{Q}[X] . $ Prove that the function $ E_u:\mathbb{Q}[X]\longrightarrow\mathbb{Q}[X] $ defined as $ E_u(P)=P(u) $ is an endomorphism. [b]b)[/b] Let $ E $ be an injective endomorphism of $ \mathbb{Q} [X] . $ Show that there exists a nonconstant polynom $ v $ in $ \mathbb{Q}[X] $ such that $ E(P)=P(v) , $ for any $ P $ in $ \mathbb{Q}[X] . $ [b]c)[/b] Let $ A $ be an automorphism of $ \mathbb{Q}[X] . $ Demonstrate that there is a nonzero constant polynom $ w $ in $ \mathbb{Q}[X] $ which has the property that $ A(P)=P(w) , $ for any $ P $ in $ \mathbb{Q}[X] . $ [i]Marcel Čšena[/i]

2012 Romanian Master of Mathematics, 3

Each positive integer is coloured red or blue. A function $f$ from the set of positive integers to itself has the following two properties: (a) if $x\le y$, then $f(x)\le f(y)$; and (b) if $x,y$ and $z$ are (not necessarily distinct) positive integers of the same colour and $x+y=z$, then $f(x)+f(y)=f(z)$. Prove that there exists a positive number $a$ such that $f(x)\le ax$ for all positive integers $x$. [i](United Kingdom) Ben Elliott[/i]

2011 China Second Round Olympiad, 2

Tags: function , algebra
Find the range of the function $f(x)=\frac{\sqrt{x^2+1}}{x-1}$.

PEN K Problems, 1

Prove that there is a function $f$ from the set of all natural numbers into itself such that $f(f(n))=n^2$ for all $n \in \mathbb{N}$.

1990 Greece National Olympiad, 4

Find all functions $f: \mathbb{R}^+\to\mathbb{R}$ such that $f(x+y)=f(x^2)+f(y^2)$ for any $x,y \in\mathbb{R}^+$

2004 Pre-Preparation Course Examination, 3

For a subset $ S$ of vertices of graph $ G$, let $ \Lambda(S)$ be the subset of all edges of $ G$ such that at least one of their ends is in $ S$. Suppose that $ G$ is a graph with $ m$ edges. Let $ d^*: V(G)\longrightarrow\mathbb N\cup\{0\}$ be a function such that a) $ \sum_{u}d^*(u)\equal{}m$. b) For each subset $ S$ of $ V(G)$: \[ \sum_{u\in S}d^*(u)\leq|\Lambda(S)|\] Prove that we can give directions to edges of $ G$ such that for each edge $ e$, $ d^\plus{}(e)\equal{}d^*(e)$.

2006 District Olympiad, 4

Let $\mathcal F = \{ f: [0,1] \to [0,\infty) \mid f$ continuous $\}$ and $n$ an integer, $n\geq 2$. Find the smallest real constant $c$ such that for any $f\in \mathcal F$ the following inequality takes place \[ \int^1_0 f \left( \sqrt [n] x \right) dx \leq c \int^1_0 f(x) dx. \]

2024 Kazakhstan National Olympiad, 2

Given a prime number $p\ge 3,$ and an integer $d \ge 1$. Prove that there exists an integer $n\ge 1,$ such that $\gcd(n,d) = 1,$ and the product \[P=\prod\limits_{1 \le i < j < p} {({i^{n + j}} - {j^{n + i}})} \text{ is not divisible by } p^n.\]

1994 IMO Shortlist, 5

Let $ f(x) \equal{} \frac{x^2\plus{}1}{2x}$ for $ x \neq 0.$ Define $ f^{(0)}(x) \equal{} x$ and $ f^{(n)}(x) \equal{} f(f^{(n\minus{}1)}(x))$ for all positive integers $ n$ and $ x \neq 0.$ Prove that for all non-negative integers $ n$ and $ x \neq \{\minus{}1,0,1\}$ \[ \frac{f^{(n)}(x)}{f^{(n\plus{}1)}(x)} \equal{} 1 \plus{} \frac{1}{f \left( \left( \frac{x\plus{}1}{x\minus{}1} \right)^{2n} \right)}.\]

2005 Today's Calculation Of Integral, 82

Let $0<a<b$.Prove the following inequaliy. \[\frac{1}{b-a}\int_a^b \left(\ln \frac{b}{x}\right)^2 dx<2\]

2000 IMO Shortlist, 4

The function $ F$ is defined on the set of nonnegative integers and takes nonnegative integer values satisfying the following conditions: for every $ n \geq 0,$ (i) $ F(4n) \equal{} F(2n) \plus{} F(n),$ (ii) $ F(4n \plus{} 2) \equal{} F(4n) \plus{} 1,$ (iii) $ F(2n \plus{} 1) \equal{} F(2n) \plus{} 1.$ Prove that for each positive integer $ m,$ the number of integers $ n$ with $ 0 \leq n < 2^m$ and $ F(4n) \equal{} F(3n)$ is $ F(2^{m \plus{} 1}).$

2022 China Team Selection Test, 4

Given a positive integer $n$, find all $n$-tuples of real number $(x_1,x_2,\ldots,x_n)$ such that \[ f(x_1,x_2,\cdots,x_n)=\sum_{k_1=0}^{2} \sum_{k_2=0}^{2} \cdots \sum_{k_n=0}^{2} \big| k_1x_1+k_2x_2+\cdots+k_nx_n-1 \big| \] attains its minimum.

2017 Germany Team Selection Test, 3

Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2010 Today's Calculation Of Integral, 607

On the coordinate plane, Let $C$ be the graph of $y=(\ln x)^2\ (x>0)$ and for $\alpha >0$, denote $L(\alpha)$ be the tangent line of $C$ at the point $(\alpha ,\ (\ln \alpha)^2).$ (1) Draw the graph. (2) Let $n(\alpha)$ be the number of the intersection points of $C$ and $L(\alpha)$. Find $n(\alpha)$. (3) For $0<\alpha <1$, let $S(\alpha)$ be the area of the region bounded by $C,\ L(\alpha)$ and the $x$-axis. Find $S(\alpha)$. 2010 Tokyo Institute of Technology entrance exam, Second Exam.