Found problems: 4776
2006 Australia National Olympiad, 2
Let $f$ be a function defined on the positive integers, taking positive integral values, such that
$f(a)f(b) = f(ab)$ for all positive integers $a$ and $b$,
$f(a) < f(b)$ if $a < b$,
$f(3) \geq 7$.
Find the smallest possible value of $f(3)$.
2023 4th Memorial "Aleksandar Blazhevski-Cane", P2
Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that for all $x,y>0$ we have
$$f(xy+f(x))=yf(x)+x.$$
[i]Proposed by Nikola Velov[/i]
2008 Singapore Team Selection Test, 2
Find all functions $ f : \mathbb R \rightarrow \mathbb R$ such that $ (x \plus{} y)(f(x) \minus{} f(y)) \equal{} (x \minus{}y)f(x \plus{} y)$ for all $ x, y\in \mathbb R$
2004 AMC 12/AHSME, 13
If $ f(x) \equal{} ax \plus{} b$ and $ f^{ \minus{} 1}(x) \equal{} bx \plus{} a$ with $ a$ and $ b$ real, what is the value of $ a \plus{} b$?
$ \textbf{(A)} \minus{} \!2 \qquad \textbf{(B)} \minus{} \!1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ 1 \qquad \textbf{(E)}\ 2$
2024 Romania National Olympiad, 3
Let $f:[0,1] \to \mathbb{R}$ be a continuous function with $f(1)=0.$ Prove that the limit $$\lim_{t \nearrow 1} \left( \frac{1}{1-t} \int\limits_0^1x(f(tx)-f(x)) \mathrm{d}x\right)$$ exists and find its value.
2002 Switzerland Team Selection Test, 5
Find all $f: R\rightarrow R$ such that
(i) The set $\{\frac{f(x)}{x}| x\in R-\{0\}\}$ is finite
(ii) $f(x-1-f(x)) = f(x)-1-x$ for all $x$
1996 Abels Math Contest (Norwegian MO), 4
Let $f : N \to N$ be a function such that $f(f(1995)) = 95, f(xy) = f(x)f(y)$ and $f(x) \le x$ for all $x,y$.
Find all possible values of $f(1995)$.
2008 Grigore Moisil Intercounty, 1
Find the differentiable functions $ f:\mathbb{R}\longrightarrow (-\infty ,1) $ with the property $ f(1)=-1 $ and
$$ f(x+y)=f(x)+f(y)-f(x)f(y) , $$
for any reals $ x,y. $
[i]Vasile Pop[/i]
2011 Today's Calculation Of Integral, 709
Evaluate $ \int_0^1 \frac{x}{1\plus{}x}\sqrt{1\minus{}x^2}\ dx$.
2006 Brazil National Olympiad, 3
Find all functions $f\colon \mathbb{R}\to \mathbb{R}$ such that
\[f(xf(y)+f(x)) = 2f(x)+xy\]
for every reals $x,y$.
2013 Today's Calculation Of Integral, 896
Given sequences $a_n=\frac{1}{n}{\sqrt[n] {_{2n}P_n}},\ b_n=\frac{1}{n^2}{\sqrt[n] {_{4n}P_{2n}}}$ and $c_n=\sqrt[n]{\frac{_{8n}P_{4n}}{_{6n}P_{4n}}}$, find $\lim_{n\to\infty} a_n,\ \lim_{n\to\infty} b_n$and $\lim_{n\to\infty} c_n.$
1976 USAMO, 2
If $ A$ and $ B$ are fixed points on a given circle and $ XY$ is a variable diameter of the same circle, determine the locus of the point of intersection of lines $ AX$ and $ BY$. You may assume that $ AB$ is not a diameter.
2007 Pre-Preparation Course Examination, 1
a) There is an infinite sequence of $0,1$, like $\dots,a_{-1},a_{0},a_{1},\dots$ (i.e. an element of $\{0,1\}^{\mathbb Z}$). At each step we make a new sequence. There is a function $f$ such that for each $i$, $\mbox{new }a_{i}=f(a_{i-100},a_{i-99},\dots,a_{i+100})$. This operation is mapping $F: \{0,1\}^{\mathbb Z}\longrightarrow\{0,1\}^{\mathbb Z}$. Prove that if $F$ is 1-1, then it is surjective.
b) Is the statement correct if we have an $f_{i}$ for each $i$?
2013 USAMTS Problems, 4
An infinite sequence of real numbers $a_1,a_2,a_3,\dots$ is called $\emph{spooky}$ if $a_1=1$ and for all integers $n>1$,
\[\begin{array}{c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c@{\;\,}c}
na_1&+&(n-1)a_2&+&(n-2)a_3&+&\dots&+&2a_{n-1}&+&a_n&<&0,\\
n^2a_1&+&(n-1)^2a_2&+&(n-2)^2a_3&+&\dots&+&2^2a_{n-1}&+&a_n&>&0.
\end{array}\]Given any spooky sequence $a_1,a_2,a_3,\dots$, prove that
\[2013^3a_1+2012^3a_2+2011^3a_3+\cdots+2^3a_{2012}+a_{2013}<12345.\]
2024 Indonesia TST, A
Let $\mathbb{R}$ be the set of real numbers. Let $f:\mathbb{R}\rightarrow\mathbb{R}$ be a function such that \[f(x+y)f(x-y)\geqslant f(x)^2-f(y)^2\] for every $x,y\in\mathbb{R}$. Assume that the inequality is strict for some $x_0,y_0\in\mathbb{R}$.
Prove that either $f(x)\geqslant 0$ for every $x\in\mathbb{R}$ or $f(x)\leqslant 0$ for every $x\in\mathbb{R}$.
1992 AIME Problems, 5
Let $S$ be the set of all rational numbers $r$, $0<r<1$, that have a repeating decimal expansion in the form \[0.abcabcabc\ldots=0.\overline{abc},\] where the digits $a$, $b$, and $c$ are not necessarily distinct. To write the elements of $S$ as fractions in lowest terms, how many different numerators are required?
2015 Switzerland Team Selection Test, 12
Given positive integers $m$ and $n$, prove that there is a positive integer $c$ such that the numbers $cm$ and $cn$ have the same number of occurrences of each non-zero digit when written in base ten.
2003 China Team Selection Test, 2
Let $S$ be a finite set. $f$ is a function defined on the subset-group $2^S$ of set $S$. $f$ is called $\textsl{monotonic decreasing}$ if when $X \subseteq Y\subseteq S$, then $f(X) \geq f(Y)$ holds. Prove that: $f(X \cup Y)+f(X \cap Y ) \leq f(X)+ f(Y)$ for $X, Y \subseteq S$ if and only if $g(X)=f(X \cup \{ a \}) - f(X)$ is a $\textsl{monotonic decreasing}$ funnction on the subset-group $2^{S \setminus \{a\}}$ of set $S \setminus \{a\}$ for any $a \in S$.
2001 District Olympiad, 4
Consider a function $f:\mathbb{Z}\to \mathbb{Z}$ such that:
\[f(m^2+f(n))=f^2(m)+n,\ \forall m,n\in \mathbb{Z}\]
Prove that:
a)$f(0)=0$;
b)$f(1)=1$;
c)$f(n)=n,\ \forall n\in \mathbb{Z}$
[i]Lucian Dragomir[/i]
1998 Federal Competition For Advanced Students, Part 2, 3
Let $a_n$ be a sequence recursively defined by $a_0 = 0, a_1 = 1$ and $a_{n+2} = a_{n+1} + a_n$. Calculate the sum of $a_n\left( \frac 25\right)^n$ for all positive integers $n$. For what value of the base $b$ we get the sum $1$?
2019 AIME Problems, 8
The polynomial $f(z)=az^{2018}+bz^{2017}+cz^{2016}$ has real coefficients not exceeding $2019$, and $f(\tfrac{1+\sqrt{3}i}{2})=2015+2019\sqrt{3}i$. Find the remainder when $f(1)$ is divided by $1000$.
1999 Polish MO Finals, 2
Prove that for any $ 2n$ real numbers $ a_{1}$, $ a_{2}$, ..., $ a_{n}$, $ b_{1}$, $ b_{2}$, ..., $ b_{n}$, we have $ \sum_{i < j}{\left|a_{i}\minus{}a_{j}\right|}\plus{}\sum_{i < j}{\left|b_{i}\minus{}b_{j}\right|}\leq\sum_{i,j\in\left[1,n\right]}{\left|a_{i}\minus{}b_{j}\right|}$.
2000 Romania Team Selection Test, 1
Let $n\ge 2$ be a positive integer. Find the number of functions $f:\{1,2,\ldots ,n\}\rightarrow\{1,2,3,4,5 \}$ which have the following property: $|f(k+1)-f(k)|\ge 3$, for any $k=1,2,\ldots n-1$.
[i]Vasile Pop[/i]
2005 Moldova Team Selection Test, 4
$n$ is a positive integer, $K$ the set of polynoms of real variables $x_1,x_2,...,x_{n+1}$ and $y_1,y_2,...,y_{n+1}$, function $f:K\rightarrow K$ satisfies
\[f(p+q)=f(p)+f(q),\quad f(pq)=f(p)q+pf(q),\quad (\forall)p,q\in K.\]
If $f(x_i)=(n-1)x_i+y_i,\quad f(y_i)=2ny_i$ for all $i=1,2,...,n+1$ and
\[\prod_{i=1}^{n+1}(tx_i+y_i)=\sum_{i=0}^{n+1}p_it^{n+1-i}\]
for any real $t$, prove, that for all $k=1,...,n+1$
\[f(p_{k-1})=kp_k+(n+1)(n+k-2)p_{k-1}\]
2013 IMO Shortlist, A5
Let $\mathbb{Z}_{\ge 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\ge 0} \rightarrow \mathbb{Z}_{\ge 0} $ satisfying the relation
\[ f(f(f(n))) = f(n+1 ) +1 \]
for all $ n\in \mathbb{Z}_{\ge 0}$.