Found problems: 4776
2018 IMO Shortlist, N6
Let $f : \{ 1, 2, 3, \dots \} \to \{ 2, 3, \dots \}$ be a function such that $f(m + n) | f(m) + f(n) $ for all pairs $m,n$ of positive integers. Prove that there exists a positive integer $c > 1$ which divides all values of $f$.
1990 Austrian-Polish Competition, 5
Let $n>1$ be an integer and let $f_1$, $f_2$, ..., $f_{n!}$ be the $n!$ permutations of $1$, $2$, ..., $n$. (Each $f_i$ is a bijective function from $\{1,2,...,n\}$ to itself.) For each permutation $f_i$, let us define $S(f_i)=\sum^n_{k=1} |f_i(k)-k|$. Find $\frac{1}{n!} \sum^{n!}_{i=1} S(f_i)$.
2005 All-Russian Olympiad, 1
Find the maximal possible finite number of roots of the equation $|x-a_1|+\dots+|x-a_{50}|=|x-b_1|+\dots+|x-b_{50}|$, where $a_1,\,a_2,\,\dots,a_{50},\,b_1,\dots,\,b_{50}$ are distinct reals.
1997 IMC, 3
Show that $\sum^{\infty}_{n=1}\frac{(-1)^{n-1}\sin(\log n)}{n^\alpha}$ converges iff $\alpha>0$.
2022 Macedonian Team Selection Test, Problem 3
We consider all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(f(n)+n)=n$ and $f(a+b-1) \leq f(a)+f(b)$ for all positive integers $a, b, n$. Prove that there are at most two values for $f(2022)$.
$\textit {Proposed by Ilija Jovcheski}$
2020 Italy National Olympiad, #5
Le $S$ be the set of positive integers greater than or equal to $2$. A function $f: S\rightarrow S$ is italian if $f$ satifies all the following three conditions:
1) $f$ is surjective
2) $f$ is increasing in the prime numbers(that is, if $p_1<p_2$ are prime numbers, then $f(p_1)<f(p_2)$)
3) For every $n\in S$ the number $f(n)$ is the product of $f(p)$, where $p$ varies among all the primes which divide $n$ (For instance, $f(360)=f(2^3\cdot 3^2\cdot 5)=f(2)\cdot f(3)\cdot f(5)$).
Determine the maximum and the minimum possible value of $f(2020)$, when $f$ varies among all italian functions.
2007 F = Ma, 19
A non-Hookian spring has force $F = -kx^2$ where $k$ is the spring constant and $x$ is the displacement from its unstretched position. For the system shown of a mass $m$ connected to an unstretched spring initially at rest, how far does the spring extend before the system momentarily comes to rest? Assume that all surfaces are frictionless and that the pulley is frictionless as well.
[asy]
size(250);
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps);
draw((0,0)--(0,-1)--(2,-1)--(2+sqrt(3),-2));
draw((2.5,-2)--(4.5,-2),dashed);
draw(circle((2.2,-0.8),0.2));
draw((2.2,-0.8)--(1.8,-1.2));
draw((0,-0.6)--(0.6,-0.6)--(0.75,-0.4)--(0.9,-0.8)--(1.05,-0.4)--(1.2,-0.8)--(1.35,-0.4)--(1.5,-0.8)--(1.65,-0.4)--(1.8,-0.8)--(1.95,-0.6)--(2.2,-0.6));
draw((2+0.3*sqrt(3),-1.3)--(2+0.3*sqrt(3)+0.6/2,-1.3+sqrt(3)*0.6/2)--(2+0.3*sqrt(3)+0.6/2+0.2*sqrt(3),-1.3+sqrt(3)*0.6/2-0.2)--(2+0.3*sqrt(3)+0.2*sqrt(3),-1.3-0.2)); //super complex Asymptote code gg
draw((2+0.3*sqrt(3)+0.3/2,-1.3+sqrt(3)*0.3/2)--(2.35,-0.6677));
draw(anglemark((2,-1),(2+sqrt(3),-2),(2.5,-2)));
label("$30^\circ$",(3.5,-2),NW);
[/asy]
$ \textbf{(A)}\ \left(\frac{3mg}{2k}\right)^{1/2} $
$ \textbf{(B)}\ \left(\frac{mg}{k}\right)^{1/2} $
$ \textbf{(C)}\ \left(\frac{2mg}{k}\right)^{1/2} $
$ \textbf{(D)}\ \left(\frac{\sqrt{3}mg}{k}\right)^{1/3} $
$ \textbf{(E)}\ \left(\frac{3\sqrt{3}mg}{2k}\right)^{1/3} $
1975 Vietnam National Olympiad, 5
Show that the sum of the (local) maximum and minimum values of the function $\frac{tan(3x)}{tan^3x}$ on the interval $\big(0, \frac{\pi }{2}\big)$ is rational.
2007 AMC 12/AHSME, 22
Two particles move along the edges of equilateral triangle $ \triangle ABC$ in the direction
\[ A\rightarrow B\rightarrow C\rightarrow A
\]starting simultaneously and moving at the same speed. One starts at $ A$, and the other starts at the midpoint of $ \overline{BC}$. The midpoint of the line segment joining the two particles traces out a path that encloses a region $ R$. What is the ratio of the area of $ R$ to the area of $ \triangle ABC$?
$ \textbf{(A)}\ \frac {1}{16}\qquad \textbf{(B)}\ \frac {1}{12}\qquad \textbf{(C)}\ \frac {1}{9}\qquad \textbf{(D)}\ \frac {1}{6}\qquad \textbf{(E)}\ \frac {1}{4}$
2019 Belarus Team Selection Test, 5.1
A function $f:\mathbb N\to\mathbb N$, where $\mathbb N$ is the set of positive integers, satisfies the following condition: for any positive integers $m$ and $n$ ($m>n$) the number $f(m)-f(n)$ is divisible by $m-n$.
Is the function $f$ necessarily a polynomial? (In other words, is it true that for any such function there exists a polynomial $p(x)$ with real coefficients such that $f(n)=p(n)$ for all positive integers $n$?)
[i](Folklore)[/i]
Today's calculation of integrals, 849
Evaluate $\int_1^{e^2} \frac{(2x^2+2x+1)e^{x}}{\sqrt{x}}\ dx.$
1990 IMO Shortlist, 18
Let $ a, b \in \mathbb{N}$ with $ 1 \leq a \leq b,$ and $ M \equal{} \left[\frac {a \plus{} b}{2} \right].$ Define a function $ f: \mathbb{Z} \mapsto \mathbb{Z}$ by
\[ f(n) \equal{} \begin{cases} n \plus{} a, & \text{if } n \leq M, \\
n \minus{} b, & \text{if } n >M. \end{cases}
\]
Let $ f^1(n) \equal{} f(n),$ $ f_{i \plus{} 1}(n) \equal{} f(f^i(n)),$ $ i \equal{} 1, 2, \ldots$ Find the smallest natural number $ k$ such that $ f^k(0) \equal{} 0.$
1994 Iran MO (2nd round), 1
Let $\overline{a_1a_2a_3\ldots a_n}$ be the representation of a $n-$digits number in base $10.$ Prove that there exists a one-to-one function like $f : \{0, 1, 2, 3, \ldots, 9\} \to \{0, 1, 2, 3, \ldots, 9\}$ such that $f(a_1) \neq 0$ and the number $\overline{ f(a_1)f(a_2)f(a_3) \ldots f(a_n) }$ is divisible by $3.$
2004 Postal Coaching, 4
In how many ways can a $2\times n$ grid be covered by
(a) 2 monominoes and $n-1$ dominoes
(b) 4 monominoes and $n-2$ dominoes.
1997 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 3
Let $ f_i (x), i \equal{} 1,2,3 \cdots$ be defined by $ f_1 (x) \equal{} \frac{1}{1 \minus{} x}$ and $ f_{i\plus{}1} (x) \equal{} f_i (f_1 (x))$. Then $ f_{1998} (1998)$ equals
A. 0
B. 1998
C. -1/1997
D. 1997/1998
E. None of these
2017 Taiwan TST Round 2, 3
Denote by $\mathbb{N}$ the set of all positive integers. Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all positive integers $m$ and $n$, the integer $f(m)+f(n)-mn$ is nonzero and divides $mf(m)+nf(n)$.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2000 Belarus Team Selection Test, 5.3
Suppose that every integer has been given one of the colours red, blue, green or yellow. Let $x$ and $y$ be odd integers so that $|x| \neq |y|$. Show that there are two integers of the same colour whose difference has one of the following values: $x,y,x+y$ or $x-y$.
2023 Miklós Schweitzer, 5
Let $G{}$ be an arbitrary finite group, and let $t_n(G)$ be the number of functions of the form \[f:G^n\to G,\quad f(x_1,x_2,\ldots,x_n)=a_0x_1a_1\cdots x_na_n\quad(a_0,\ldots,a_n\in G).\]Determine the limit of $t_n(G)^{1/n}$ as $n{}$ tends to infinity.
2015 Romania National Olympiad, 4
Find all non-constant polynoms $ f\in\mathbb{Q} [X] $ that don't have any real roots in the interval $ [0,1] $ and for which there exists a function $ \xi :[0,1]\longrightarrow\mathbb{Q} [X]\times\mathbb{Q} [X], \xi (x):=\left( g_x,h_x \right) $ such that $ h_x(x)\neq 0 $ and $ \int_0^x \frac{dt}{f(t)} =\frac{g_x(x)}{h_x(x)} , $ for all $ x\in [0,1] . $
2019 Philippine TST, 5
Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying $$\left(x+\frac{1}{x}\right)f(y)=f(xy)+f\left(\frac{y}{x}\right)$$ for all $x,y>0$.
2010 Morocco TST, 1
$f$ is a function twice differentiable on $[0,1]$ and such that $f''$ is continuous. We suppose that : $f(1)-1=f(0)=f'(1)=f'(0)=0$.
Prove that there exists $x_0$ on $[0,1]$ such that $|f''(x_0)| \geq 4$
2002 AMC 10, 21
Let $f$ be a real-valued function such that \[f(x)+2f\left(\dfrac{2002}x\right)=3x\] for all $x>0$. Find $f(2)$.
$\textbf{(A) }1000\qquad\textbf{(B) }2000\qquad\textbf{(C) }3000\qquad\textbf{(D) }4000\qquad\textbf{(E) }6000$
MIPT student olimpiad autumn 2024, 3
$\exists ? f: R\to R$ continuos function that:
$\forall x_0\in R \lim\limits_{x \to x_0} \frac{|f(x)-f(x_0)|}{|x-x_0|}=+\infty$
2005 Grigore Moisil Urziceni, 2
Let be a function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{\ge 0} $ that admits primitives and such that $ \lim_{x\to 0 } \frac{f(x)}{x} =0. $ Prove that the function $ g:\mathbb{R}\longrightarrow\mathbb{R} , $ defined as
$$ g(x)=\left\{ \begin{matrix} f(x)/x ,&\quad x\neq 0\\ 0,& \quad x=0 \end{matrix} \right. , $$
is primitivable.
2012 Puerto Rico Team Selection Test, 7
Let $f$ be a function with the following properties:
1) $f(n)$ is defined for every positive integer $n$;
2) $f(n)$ is an integer;
3) $f(2)=2$;
4) $f(mn)=f(m)f(n)$ for all $m$ and $n$;
5) $f(m)>f(n)$ whenever $m>n$.
Prove that $f(n)=n$.