This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2013 District Olympiad, 2

Let $a,b\in \mathbb{C}$. Prove that $\left| az+b\bar{z} \right|\le 1$, for every $z\in \mathbb{C}$, with $\left| z \right|=1$, if and only if $\left| a \right|+\left| b \right|\le 1$.

2024 Baltic Way, 9

Let $S$ be a finite set. For a positive integer $n$, we say that a function $f\colon S\to S$ is an [i]$n$-th power[/i] if there exists some function $g\colon S\to S$ such that \[ f(x) = \underbrace{g(g(\ldots g(x)\ldots))}_{\mbox{\scriptsize $g$ applied $n$ times}} \] for each $x\in S$. Suppose that a function $f\colon S\to S$ is an $n$-th power for each positive integer $n$. Is it necessarily true that $f(f(x)) = f(x)$ for each $x\in S$?

Russian TST 2016, P3

Let $2\mathbb{Z} + 1$ denote the set of odd integers. Find all functions $f:\mathbb{Z} \mapsto 2\mathbb{Z} + 1$ satisfying \[ f(x + f(x) + y) + f(x - f(x) - y) = f(x+y) + f(x-y) \] for every $x, y \in \mathbb{Z}$.

1984 IMO Longlists, 29

Let $S_n = \{1, \cdots, n\}$ and let $f$ be a function that maps every subset of $S_n$ into a positive real number and satisfies the following condition: For all $A \subseteq S_n$ and $x, y \in S_n, x \neq y, f(A \cup \{x\})f(A \cup \{y\}) \le f(A \cup \{x, y\})f(A)$. Prove that for all $A,B \subseteq S_n$ the following inequality holds: \[f(A) \cdot f(B) \le f(A \cup B) \cdot f(A \cap B)\]

2013 NIMO Problems, 2

Let $f$ be a function from positive integers to positive integers where $f(n) = \frac{n}{2}$ if $n$ is even and $f(n) = 3n+1$ if $n$ is odd. If $a$ is the smallest positive integer satisfying \[ \underbrace{f(f(\cdots f}_{2013\ f\text{'s}} (a)\cdots)) = 2013, \] find the remainder when $a$ is divided by $1000$. [i]Based on a proposal by Ivan Koswara[/i]

2011 Hanoi Open Mathematics Competitions, 9

For every pair of positive integers $(x, y)$ we de fine $f(x,y)$ as follows: $f(x,1) = x$ $f(x,y) = 0$ if $y > x$ $f(x +1,y) = y[f(x,y)+ f(x, y-1)]$ Evaluate $f(5, 5)$.

2011 Greece Team Selection Test, 3

Find all functions $f,g: \mathbb{Q}\to \mathbb{Q}$ such that the following two conditions hold: $$f(g(x)-g(y))=f(g(x))-y \ \ (1)$$ $$g(f(x)-f(y))=g(f(x))-y\ \ (2)$$ for all $x,y \in \mathbb{Q}$.

2019 Polish MO Finals, 4

Let $n, k, \ell$ be positive integers and $\sigma : \lbrace 1, 2, \ldots, n \rbrace \rightarrow \lbrace 1, 2, \ldots, n \rbrace$ an injection such that $\sigma(x)-x\in \lbrace k, -\ell \rbrace$ for all $x\in \lbrace 1, 2, \ldots, n \rbrace$. Prove that $k+\ell|n$.

2010 District Olympiad, 4

Let $ f: [0,1]\rightarrow \mathbb{R}$ a derivable function such that $ f(0)\equal{}f(1)$, $ \int_0^1f(x)dx\equal{}0$ and $ f^{\prime}(x) \neq 1\ ,\ (\forall)x\in [0,1]$. i)Prove that the function $ g: [0,1]\rightarrow \mathbb{R}\ ,\ g(x)\equal{}f(x)\minus{}x$ is strictly decreasing. ii)Prove that for each integer number $ n\ge 1$, we have: $ \left|\sum_{k\equal{}0}^{n\minus{}1}f\left(\frac{k}{n}\right)\right|<\frac{1}{2}$

2011 Today's Calculation Of Integral, 682

On the $x$-$y$ plane, 3 half-lines $y=0,\ (x\geq 0),\ y=x\tan \theta \ (x\geq 0),\ y=-\sqrt{3}x\ (x\leq 0)$ intersect with the circle with the center the origin $O$, radius $r\geq 1$ at $A,\ B,\ C$ respectively. Note that $\frac{\pi}{6}\leq \theta \leq \frac{\pi}{3}$. If the area of quadrilateral $OABC$ is one third of the area of the regular hexagon which inscribed in a circle with radius 1, then evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} r^2d\theta .$ [i]2011 Waseda University of Education entrance exam/Science[/i]

2013 Silk Road, 3

Find all non-decreasing functions $ f\,:\,\mathbb{N}\to\mathbb{N} $, such that $f(f(m)f(n)+m)=f(mf(n))+f(m)$

2021 Switzerland - Final Round, 6

Tags: algebra , function
Let $\mathbb{N}$ be the set of positive integers. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that for every positive integer $n \in \mathbb{N}$ $$ f(n) -n<2021 \quad \text{and} \quad f^{f(n)}(n) =n$$ Prove that $f(n)=n$ for infinitely many $n \in \mathbb{N}$

2018 Belarusian National Olympiad, 10.2

Determine, whether there exist a function $f$ defined on the set of all positive real numbers and taking positive values such that $f(x+y)\geqslant yf(x)+f(f(x))$ for all positive x and y?

2008 Miklós Schweitzer, 7

Let $f\colon \mathbb{R}^1\rightarrow \mathbb{R}^2$ be a continuous function such that $f(x)=f(x+1)$ for all $x$, and let $t\in [0,\frac14]$. Prove that there exists $x\in\mathbb{R}$ such that the vector from $f(x-t)$ to $f(x+t)$ is perpendicular to the vector from $f(x)$ to $f(x+\frac12)$. (translated by Miklós Maróti)

2013 Bogdan Stan, 2

Let be a sequence of continuous functions $ \left( f_n \right)_{n\ge 1} :[0,1]\longrightarrow\mathbb{R} $ satisfying the following properties: $ \text{a) } $ for any natural $ n $ and $ x\in [1/n,1] ,$ it follows $ \left| f_n(x) \right|\leqslant 1/n. $ $ \text{b) } $ for any natural $ n, $ it follows $ \int_0^1 f_n^2(t)dt\leqslant 1. $ Then, $\lim_{n\to 0} \int_0^1\left| f_n(t) \right| dt=0 $ [i]Cristinel Mortici[/i]

2014 Romania Team Selection Test, 4

Let $n$ be a positive integer and let $A_n$ respectively $B_n$ be the set of nonnegative integers $k<n$ such that the number of distinct prime factors of $\gcd(n,k)$ is even (respectively odd). Show that $|A_n|=|B_n|$ if $n$ is even and $|A_n|>|B_n|$ if $n$ is odd. Example: $A_{10} = \left\{ 0,1,3,7,9 \right\}$, $B_{10} = \left\{ 2,4,5,6,8 \right\}$.

2016 Canadian Mathematical Olympiad Qualification, 4

Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(x + f(y)) + f(x - f(y)) = x.$$

2013 Romania National Olympiad, 4

a) Consider\[f\text{:}\left[ \text{0,}\infty \right)\to \left[ \text{0,}\infty \right)\] a differentiable and convex function .Show that $f\left( x \right)\le x$, for every $x\ge 0$, than ${f}'\left( x \right)\le 1$ ,for every $x\ge 0$ b) Determine \[f\text{:}\left[ \text{0,}\infty \right)\to \left[ \text{0,}\infty \right)\] differentiable and convex functions which have the property that $f\left( 0 \right)=0\,$, and ${f}'\left( x \right)f\left( f\left( x \right) \right)=x$, for every $x\ge 0$

2005 QEDMO 1st, 12 (U2)

For any three positive real numbers $a$, $b$, $c$, prove the inequality \[\frac{\left(b+c\right)^{2}}{a^{2}+bc}+\frac{\left(c+a\right)^{2}}{b^{2}+ca}+\frac{\left(a+b\right)^{2}}{c^{2}+ab}\geq 6.\] Darij

2021 Science ON grade XI, 1

Consider a function $f:\mathbb{R}\rightarrow \mathbb{R}$. For $x\in \mathbb{R}$ we say that $f$ is [i]increasing in $x$[/i] if there exists $\epsilon_x > 0$ such that $f(x)\geq{f(a)}$, $\forall a\in (x-\epsilon_x,x)$ and $f(x)\leq f(b)$, $\forall b\in (x,x+\epsilon_x)$. $\textbf{(a)}$ Prove that if $f$ is increasing in $x$, $\forall x\in \mathbb{R}$ then $f$ is increasing over $\mathbb{R}$. $\textbf{(b)}$ We say that $f$ is [i]increasing to the left[/i] in $x$ if there exists $\epsilon_x > 0$ such that $f(x)\geq f(a) $, $ \forall a \in (x-\epsilon_x,x)$. Provide an example of a function $f: [0,1]\rightarrow \mathbb{R}$ for which there exists an infinite set $M \subset (0,1)$ such that $f$ is increasing to the left in every point of $M$, yet $f$ is increasing over no proper subinterval of $[0,1]$.

2014 Math Prize for Girls Olympiad, 2

Let $f$ be the function defined by $f(x) = 4x(1 - x)$. Let $n$ be a positive integer. Prove that there exist distinct real numbers $x_1$, $x_2$, $\ldots\,$, $x_n$ such that $x_{i + 1} = f(x_i)$ for each integer $i$ with $1 \le i \le n - 1$, and such that $x_1 = f(x_n)$.

2021 ITAMO, 4

Tags: function , algebra
Given two fractions $a/b$ and $c/d$ we define their [i]pirate sum[/i] as: $\frac{a}{b} \star \frac{c}{d} = \frac{a+c}{b+d}$ where the two initial fractions are simplified the most possible, like the result. For example, the pirate sum of $2/7$ and $4/5$ is $1/2$. Given an integer $n \ge 3$, initially on a blackboard there are the fractions: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}$. At each step we choose two fractions written on the blackboard, we delete them and write at their place their pirate sum. Continue doing the same thing until on the blackboard there is only one fraction. Determine, in function of $n$, the maximum and the minimum possible value for the last fraction.

2015 Postal Coaching, Problem 1

Find all positive integer $n$ such that $$\frac{\sin{n\theta}}{\sin{\theta}} - \frac{\cos{n\theta}}{\cos{\theta}} = n-1$$ holds for all $\theta$ which are not integral multiples of $\frac{\pi}{2}$

2006 Vietnam Team Selection Test, 1

Prove that for all real numbers $x,y,z \in [1,2]$ the following inequality always holds: \[ (x+y+z)(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})\geq 6(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}). \] When does the equality occur?

2015 Korea National Olympiad, 1

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for all reals $x,y,z$, we have $$(f(x)+1)(f(y)+f(z))=f(xy+z)+f(xz-y)$$