This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2019 Danube Mathematical Competition, 2

Find all nondecreasing functions $ f:\mathbb{R}\longrightarrow\mathbb{R} $ that verify the relation $$ f\left( f\left( x^2 \right) +y+f(y) \right) =x^2+2f(y) , $$ for any real numbers $ x,y. $

2002 Romania Team Selection Test, 4

Let $f:\mathbb{Z}\rightarrow\{ 1,2,\ldots ,n\}$ be a function such that $f(x)\not= f(y)$, for all $x,y\in\mathbb{Z}$ such that $|x-y|\in\{2,3,5\}$. Prove that $n\ge 4$. [i]Ioan Tomescu[/i]

2014 IPhOO, 13

An infinitely long slab of glass is rotated. A light ray is pointed at the slab such that the ray is kept horizontal. If $\theta$ is the angle the slab makes with the vertical axis, then $\theta$ is changing as per the function \[ \theta(t) = t^2, \]where $\theta$ is in radians. Let the $\emph{glassious ray}$ be the ray that represents the path of the refracted light in the glass, as shown in the figure. Let $\alpha$ be the angle the glassious ray makes with the horizontal. When $\theta=30^\circ$, what is the rate of change of $\alpha$, with respect to time? Express your answer in radians per second (rad/s) to 3 significant figures. Assume the index of refraction of glass to be $1.50$. Note: the second figure shows the incoming ray and the glassious ray in cyan. [asy] fill((6,-2-sqrt(3))--(3, -2)--(3+4/sqrt(3),2)--(6+4/sqrt(3),2-sqrt(3))--cycle, gray(0.7)); draw((3+2/sqrt(3),0)--(10,0),linetype("4 4")+grey); draw((0,0)--(3+2/sqrt(3),0)); draw((3+2/sqrt(3), 0)--(7+2/sqrt(3), -1)); arrow((6.5+2/sqrt(3), -7/8), dir(180-14.04), 9); draw((3,-2)--(3,2), linetype("4 4")); draw((6,-2-sqrt(3))--(3,-2)--(3+2/sqrt(3),0)--(3+4/sqrt(3), 2)--(6+4/sqrt(3), 2-sqrt(3))); draw(anglemark((3+2/sqrt(3),0),(3,-2),(3,0),15)); label("$\theta$", (3.2, -1.6), N, fontsize(8)); label("$\alpha$", (6, -0.2), fontsize(8)); [/asy] [asy] fill((6,-2-sqrt(3))--(3, -2)--(3+4/sqrt(3),2)--(6+4/sqrt(3),2-sqrt(3))--cycle, gray(0.7)); draw((3+2/sqrt(3),0)--(10,0),linetype("4 4")+grey); draw((0,0)--(3+2/sqrt(3),0), cyan); draw((3+2/sqrt(3), 0)--(7+2/sqrt(3), -1), cyan); arrow((6.5+2/sqrt(3), -7/8), dir(180-14.04), 9, cyan); draw((3,-2)--(3,2), linetype("4 4")); draw((6,-2-sqrt(3))--(3,-2)--(3+2/sqrt(3),0)--(3+4/sqrt(3), 2)--(6+4/sqrt(3), 2-sqrt(3))); draw(anglemark((3+2/sqrt(3),0),(3,-2),(3,0),15)); label("$\theta$", (3.2, -1.6), N, fontsize(8)); label("$\alpha$", (6, -0.2), fontsize(8)); [/asy] [i]Problem proposed by Ahaan Rungta[/i]

2017 Purple Comet Problems, 22

Find the number of functions $f$ that map the set $\{1,2, 3,4\}$ into itself such that the range of the function $f(x)$ is the same as the range of the function $f(f(x))$.

2010 N.N. Mihăileanu Individual, 3

Consider a countinuous function $ f:\mathbb{R}_{>0}\longrightarrow\mathbb{R}_{>0} $ that verifies the following conditions: $ \text{(1)} x f(f(x))=(f(x))^2,\quad\forall x\in\mathbb{R}_{>0} $ $ \text{(2)} \lim_{\stackrel{x\to 0}{x>0}} \frac{f(x)}{x}\in\mathbb{R}\cup\{ \pm\infty \} $ [b]a)[/b] Show that $ f $ is bijective. [b]b)[/b] Prove that the sequences $ \left( (\underbrace{f\circ f\circ\cdots \circ f}_{\text{n times}} ) (x) \right)_{n\ge 1} ,\left( (\underbrace{f^{-1}\circ f^{-1}\circ\cdots \circ f^{-1}}_{\text{n times}} ) (x) \right)_{n\ge 1} $ are both arithmetic progressions, for any fixed $ x\in\mathbb{R}_{>0} . $ [b]c)[/b] Determine the function $ f. $ [i]Nelu Chichirim[/i]

2010 Today's Calculation Of Integral, 624

Find the continuous function $f(x)$ such that the following equation holds for any real number $x$. \[\int_0^x \sin t \cdot f(x-t)dt=f(x)-\sin x.\] [i]1977 Keio University entrance exam/Medicine[/i]

2001 Polish MO Finals, 1

Assume that $a,b$ are integers and $n$ is a natural number. $2^na+b$ is a perfect square for every $n$.Prove that $a=0$.

2010 Contests, 3

Tags: function , algebra
Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $\boxed{1} \ f(1) = 1$ $\boxed{2} \ f(m+n)(f(m)-f(n)) = f(m-n)(f(m)+f(n)) \ \forall \ m,n \in \mathbb{Z}$

2001 Vietnam National Olympiad, 2

Find all real-valued continuous functions defined on the interval $(-1, 1)$ such that $(1-x^{2}) f(\frac{2x}{1+x^{2}}) = (1+x^{2})^{2}f(x)$ for all $x$.

2011 Canadian Open Math Challenge, 11

Let $n$  be a positive integer. A row of $n+ 1$ squares is written from left to right, numbered $0, 1, 2, \cdots, n$ Two frogs, named Alphonse and Beryl, begin a race starting at square 0. For each second that passes, Alphonse and Beryl make a jump to the right according to the following rules: if there are at least eight squares to the right of Alphonse, then Alphonse jumps eight squares to the right. Otherwise, Alphonse jumps one square to the right. If there are at least seven squares to the right of Beryl, then Beryl jumps seven squares to the right. Otherwise, Beryl jumps one square to the right. Let A(n) and B(n) respectively denote the number of seconds for Alphonse and Beryl to reach square n. For example, A(40) = 5 and B(40) = 10. (a) Determine an integer n>200 for which $B(n) <A(n)$. (b) Determine the largest integer n for which$ B(n) \le A(n)$.

2012 China Team Selection Test, 3

$n$ being a given integer, find all functions $f\colon \mathbb{Z} \to \mathbb{Z}$, such that for all integers $x,y$ we have $f\left( {x + y + f(y)} \right) = f(x) + ny$.

2007 District Olympiad, 1

For a group $\left( G, \star \right)$ and $A, B$ two non-void subsets of $G$, we define $A \star B = \left\{ a \star b : a \in A \ \text{and}\ b \in B \right\}$. (a) Prove that if $n \in \mathbb N, \, n \geq 3$, then the group $\left( \mathbb Z \slash n \mathbb Z,+\right)$ can be writen as $\mathbb Z \slash n \mathbb Z = A+B$, where $A, B$ are two non-void subsets of $\mathbb Z \slash n \mathbb Z$ and $A \neq \mathbb Z \slash n \mathbb Z, \, B \neq \mathbb Z \slash n \mathbb Z, \, \left| A \cap B \right| = 1$. (b) If $\left( G, \star \right)$ is a finite group, $A, B$ are two subsets of $G$ and $a \in G \setminus \left( A \star B \right)$, then prove that function $f : A \to G \setminus B$ given by $f(x) = x^{-1}\star a$ is well-defined and injective. Deduce that if $|A|+|B| > |G|$, then $G = A \star B$. [hide="Question."]Does the last result have a name?[/hide]

2015 Mexico National Olympiad, 3

Let $\mathbb{N} =\{1, 2, 3, ...\}$ be the set of positive integers. Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function that gives a positive integer value, to every positive integer. Suppose that $f$ satisfies the following conditions: $f(1)=1$ $f(a+b+ab)=a+b+f(ab)$ Find the value of $f(2015)$ Proposed by Jose Antonio Gomez Ortega

1997 IMC, 1

Let $f\in C^3(\mathbb{R})$ nonnegative function with $f(0)=f'(0)=0, f''(0)>0$. Define $g(x)$ as follows: \[ \{ \begin{array}{ccc}g(x)= (\frac{\sqrt{f(x)}}{f'(x)})' &\text{for}& x\not=0 \\ g(x)=0 &\text{for}& x=0\end{array} \] (a) Show that $g$ is bounded in some neighbourhood of $0$. (b) Is the above true for $f\in C^2(\mathbb{R})$?

2019 CCA Math Bonanza, L5.3

Tags: function
For a positive integer $n$, let $d\left(n\right)$ be the number of positive divisors of $n$ (for example $d\left(39\right)=4$). Estimate the average value that $d\left(n\right)$ takes on as $n$ ranges from $1$ to $2019$. An estimate of $E$ earns $2^{1-\left|A-E\right|}$ points, where $A$ is the actual answer. [i]2019 CCA Math Bonanza Lightning Round #5.3[/i]

1985 IMO Longlists, 70

Tags: algebra , function
Let $C$ be a class of functions $f : \mathbb N \to \mathbb N$ that contains the functions $S(x) = x + 1$ and $E(x) = x - [\sqrt x]^2$ for every $x \in \mathbb N$. ($[x]$ is the integer part of $x$.) If $C$ has the property that for every $f, g \in C, f + g, fg, f \circ g \in C$, show that the function $\max(f(x) - g(x), 0)$ is in $C$, for all $f; g \in C$.

2011 Turkey Team Selection Test, 1

Let $\mathbb{Q^+}$ denote the set of positive rational numbers. Determine all functions $f: \mathbb{Q^+} \to \mathbb{Q^+}$ that satisfy the conditions \[ f \left( \frac{x}{x+1}\right) = \frac{f(x)}{x+1} \qquad \text{and} \qquad f \left(\frac{1}{x}\right)=\frac{f(x)}{x^3}\] for all $x \in \mathbb{Q^+}.$

1991 Dutch Mathematical Olympiad, 3

Tags: function , algebra
A real function $ f$ satisfies $ 4f(f(x))\minus{}2f(x)\minus{}3x\equal{}0$ for all real numbers $ x$. Prove that $ f(0)\equal{}0$.

2006 China Northern MO, 5

$a,b,c$ are positive numbers such that $a+b+c=3$, show that: \[\frac{a^{2}+9}{2a^{2}+(b+c)^{2}}+\frac{b^{2}+9}{2b^{2}+(a+c)^{2}}+\frac{c^{2}+9}{2c^{2}+(a+b)^{2}}\leq 5\]

2006 Pre-Preparation Course Examination, 2

If $f(x)$ is the generating function of the sequence $a_1,a_2,\ldots$ and if $f(x)=\frac{r(x)}{s(x)}$ holds such that $r(x)$ and $s(x)$ are polynomials show that $a_n$ has a homogenous recurrence.

2011 AMC 12/AHSME, 18

Suppose that $|x+y|+|x-y|=2$. What is the maximum possible value of $x^2-6x+y^2$? $ \textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9 $

2014 Postal Coaching, 1

Let $d(n)$ denote the number of positive divisors of the positive integer $n$.Determine those numbers $n$ for which $d(n^3)=5d(n)$.

1989 Romania Team Selection Test, 4

A family of finite sets $\left\{ A_{1},A_{2},.......,A_{m}\right\} $is called [i]equipartitionable [/i] if there is a function $\varphi:\cup_{i=1}^{m}$$\rightarrow\left\{ -1,1\right\} $ such that $\sum_{x\in A_{i}}\varphi\left(x\right)=0$ for every $i=1,.....,m.$ Let $f\left(n\right)$ denote the smallest possible number of $n$-element sets which form a non-equipartitionable family. Prove that a) $f(4k +2) = 3$ for each nonnegative integer $k$, b) $f\left(2n\right)\leq1+m d\left(n\right)$, where $m d\left(n\right)$ denotes the least positive non-divisor of $n.$

2014 Miklós Schweitzer, 7

Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function and let $g : \mathbb{R} \to \mathbb{R}$ be arbitrary. Suppose that the Minkowski sum of the graph of $f$ and the graph of $g$ (i.e., the set $\{( x+y; f(x)+g(y) ) \mid x, y \in \mathbb{R}\}$) has Lebesgue measure zero. Does it follow then that the function $f$ is of the form $f(x) = ax + b$ with suitable constants $a, b \in \mathbb{R}$ ?

2006 Harvard-MIT Mathematics Tournament, 4

Tags: function
Let $a_1,a_2,\ldots$ be a sequence defined by $a_1=a_2=1$ and $a_{n+2}=a_{n+1}+a_n$ for $n\geq 1$. Find \[\sum_{n=1}^\infty \dfrac{a_n}{4^{n+1}}.\]