Found problems: 4776
1982 IMO, 1
The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.
2012 Albania National Olympiad, 4
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that
\[f(x^3)+f(y^3)=(x+y)f(x^2)+f(y^2)- f(xy)\]
for all $x\in\mathbb{R}$.
2019 Teodor Topan, 2
Let $ I $ be a nondegenerate interval, and let $ F $ be a primitive of a function $ f:I\longrightarrow\mathbb{R} . $ Show that for any distinct $ a,b\in I, $ the tangents to the graph of $ F $ at the points $ (a,F(a)) ,(b,F(b)) $ are concurrent at a point whose abscisa is situated in the interval $ (a,b). $
[i]Nicolae Bourbăcuț[/i]
2006 Peru IMO TST, 2
[color=blue][size=150]PERU TST IMO - 2006[/size]
Saturday, may 20.[/color]
[b]Question 02[/b]
Find all pairs $(a,b)$ real positive numbers $a$ and $b$ such that:
$[a[bn]]= n-1,$
for all $n$ positive integer.
Note: [x] denotes the integer part of $x$.
----------
[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=88510]Spanish version[/url]
$\text{\LaTeX}{}$ed by carlosbr
1961 AMC 12/AHSME, 19
Consider the graphs of $y=2\log{x}$ and $y=\log{2x}$. We may say that:
$ \textbf{(A)}\ \text{They do not intersect}$
$ \qquad\textbf{(B)}\ \text{They intersect at 1 point only}$
$\qquad\textbf{(C)}\ \text{They intersect at 2 points only}$
$\qquad\textbf{(D)}\ \text{They intersect at a finite number of points but greater than 2 }$
${\qquad\textbf{(E)}\ \text{They coincide} } $
1998 IMC, 4
Let $S_{n}=\{1,2,...,n\}$. How many functions $f:S_{n} \rightarrow S_{n}$ satisfy $f(k) \leq f(k+1)$ and $f(k)=f(f(k+1))$ for $k <n?$
2021 Peru Iberoamerican Team Selection Test, P2
We say that a set $S$ of positive integers is special when there exists a function $f : \mathbb{N}\to \mathbb{N}$ satisfying that:
$\bullet$ $f(k)\in S, \forall k\in\mathbb{N}$
$\bullet$ No integer $k$ with $2\le k \le 2021$ can be written as $\frac{af(a)}{bf(b)}$ with $a,b\in \mathbb{N}$
Find the smallest positive integer $n$ such that the set $S = \{ 1, 2021, 2021^2, \ldots , 2021^n \}$ is special or prove that no such integer exists.
Note: $\mathbb{N}$ represents the set $\{ 1, 2, 3, \ldots \}$
1957 Czech and Slovak Olympiad III A, 3
Find all real numbers $\alpha$ such that both values $\cot(\alpha)$ and $\cot(2\alpha)$ are integers.
2001 Macedonia National Olympiad, 2
Does there exist a function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that
\[f(f(n-1)=f(n+1)-f(n)\quad\text{for all}\ n\ge 2\text{?} \]
2010 Morocco TST, 3
Let $G$ be a non-empty set of non-constant functions $f$ such that $f(x)=ax + b$ (where $a$ and $b$ are two reals) and satisfying the following conditions:
1) if $f \in G$ and $g \in G$ then $gof \in G$,
2) if $f \in G$ then $f^ {-1} \in G$,
3) for all $f \in G$ there exists $x_f \in \mathbb{R}$ such that $f(x_f)=x_f$.
Prove that there is a real $k$ such that for all $f \in G$ we have $f(k)=k$
2022 USAMO, 5
A function $f: \mathbb{R}\to \mathbb{R}$ is [i]essentially increasing[/i] if $f(s)\leq f(t)$ holds whenever $s\leq t$ are real numbers such that $f(s)\neq 0$ and $f(t)\neq 0$.
Find the smallest integer $k$ such that for any 2022 real numbers $x_1,x_2,\ldots , x_{2022},$ there exist $k$ essentially increasing functions $f_1,\ldots, f_k$ such that \[f_1(n) + f_2(n) + \cdots + f_k(n) = x_n\qquad \text{for every } n= 1,2,\ldots 2022.\]
2012 Balkan MO Shortlist, A1
Prove that
\[\sum_{cyc}(x+y)\sqrt{(z+x)(z+y)} \geq 4(xy+yz+zx),\]
for all positive real numbers $x,y$ and $z$.
2000 AIME Problems, 15
Find the least positive integer $n$ such that \[ \frac 1{\sin 45^\circ\sin 46^\circ}+\frac 1{\sin 47^\circ\sin 48^\circ}+\cdots+\frac 1{\sin 133^\circ\sin 134^\circ}=\frac 1{\sin n^\circ}. \]
2003 Belarusian National Olympiad, 7
Does there exist a surjective function $f:R \to R$ such that the expression $f(x + y) - f(x) - f(y)$ takes exactly two values $0$ and $1$ for various real $x$ and $y$ ?
(E. Barabanov)
2010 Bulgaria National Olympiad, 2
Let $f: \mathbb N \to \mathbb N$ be a function such that $f(1)=1$ and
\[f(n)=n - f(f(n-1)), \quad \forall n \geq 2.\]
Prove that $f(n+f(n))=n $ for each positive integer $n.$
2001 National Olympiad First Round, 34
Let $f$ be a real-valued function defined over ordered pairs of integers such that \[f(x+3m-2n, y-4m+5n) = f(x,y)\] for every integers $x,y,m,n$. At most how many elements does the range set of $f$ have?
$
\textbf{(A)}\ 7
\qquad\textbf{(B)}\ 8
\qquad\textbf{(C)}\ 15
\qquad\textbf{(D)}\ 49
\qquad\textbf{(E)}\ \text{Infinitely many}
$
2004 AIME Problems, 8
Define a regular $n$-pointed star to be the union of $n$ line segments $P_1P_2, P_2P_3,\ldots, P_nP_1$ such that
$\bullet$ the points $P_1, P_2,\ldots, P_n$ are coplanar and no three of them are collinear,
$\bullet$ each of the $n$ line segments intersects at least one of the other line segments at a point other than an endpoint,
$\bullet$ all of the angles at $P_1, P_2,\ldots, P_n$ are congruent,
$\bullet$ all of the $n$ line segments $P_2P_3,\ldots, P_nP_1$ are congruent, and
$\bullet$ the path $P_1P_2, P_2P_3,\ldots, P_nP_1$ turns counterclockwise at an angle of less than 180 degrees at each vertex.
There are no regular 3-pointed, 4-pointed, or 6-pointed stars. All regular 5-pointed stars are similar, but there are two non-similar regular 7-pointed stars. How many non-similar regular 1000-pointed stars are there?
2012 Romania National Olympiad, 3
[color=darkred]Let $\mathcal{C}$ be the set of integrable functions $f\colon [0,1]\to\mathbb{R}$ such that $0\le f(x)\le x$ for any $x\in [0,1]$ . Define the function $V\colon\mathcal{C}\to\mathbb{R}$ by
\[V(f)=\int_0^1f^2(x)\ \text{d}x-\left(\int_0^1f(x)\ \text{d}x\right)^2\ ,\ f\in\mathcal{C}\ .\]
Determine the following two sets:
[list][b]a)[/b] $\{V(f_a)\, |\, 0\le a\le 1\}$ , where $f_a(x)=0$ , if $0\le x\le a$ and $f_a(x)=x$ , if $a<x\le 1\, ;$
[b]b)[/b] $\{V(f)\, |\, f\in\mathcal{C}\}\ .$[/list] [/color]
2021-IMOC, A4
Find all functions f : R-->R such that
f (f (x) + y^2) = x −1 + (y + 1)f (y)
holds for all real numbers x, y
2006 Peru IMO TST, 3
[color=blue][size=150]PERU TST IMO - 2006[/size]
Saturday, may 20.[/color]
[b]Question 03[/b]
In each square of a board drawn into squares of $2^n$ rows and
$n$ columns $(n\geq 1)$ are written a 1 or a -1, in such a way
that the rows of the board constitute all the possible sequences
of length $n$ that they are possible to be formed with numbers 1
and -1.
Next, some of the numbers are replaced by zeros.
Prove that it is possible to choose some of the rows of the board
(It could be a row only) so that in the chosen rows, is fulfilled that the
sum of the numbers in each column is zero.
----
[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=88511]Spanish version[/url]
$\text{\LaTeX}{}$ed by carlosbr
2006 Germany Team Selection Test, 1
Find all real solutions $x$ of the equation
$\cos\cos\cos\cos x=\sin\sin\sin\sin x$.
(Angles are measured in radians.)
2013 China National Olympiad, 2
For any positive integer $n$ and $0 \leqslant i \leqslant n$, denote $C_n^i \equiv c(n,i)\pmod{2}$, where $c(n,i) \in \left\{ {0,1} \right\}$. Define
\[f(n,q) = \sum\limits_{i = 0}^n {c(n,i){q^i}}\]
where $m,n,q$ are positive integers and $q + 1 \ne {2^\alpha }$ for any $\alpha \in \mathbb N$. Prove that if $f(m,q)\left| {f(n,q)} \right.$, then $f(m,r)\left| {f(n,r)} \right.$ for any positive integer $r$.
2009 Harvard-MIT Mathematics Tournament, 2
The differentiable function $F:\mathbb{R}\to\mathbb{R}$ satisfies $F(0)=-1$ and \[\dfrac{d}{dx}F(x)=\sin (\sin (\sin (\sin(x))))\cdot \cos( \sin (\sin (x))) \cdot \cos (\sin(x))\cdot\cos(x).\] Find $F(x)$ as a function of $x$.
2018 Thailand Mathematical Olympiad, 10
Let $a,b,c$ be non-zero real numbers.Prove that if function $f,g:\mathbb{R}\to\mathbb{R}$ satisfy $af(x+y)+bf(x-y)=cf(x)+g(y)$ for all real number $x,y$ that $y>2018$ then there exists a function $h:\mathbb{R}\to\mathbb{R}$ such that $f(x+y)+f(x-y)=2f(x)+h(y)$ for all real number $x,y$.
1954 Putnam, B5
Let $f(x)$ be a real-valued function, defined for $-1<x<1$ for which $f'(0)$ exists. Let $(a_n) , (b_n)$ be two sequences such that $-1 <a_n <0 <b_n <1$ for all $n$ and $\lim_{n \to \infty } a_n = 0 =\lim_{n \to \infty} b_n.$
Prove that
$$ \lim_{n \to \infty} \frac{ f(b_n )- f(a_n ) }{b_n -a_n} =f'(0).$$