This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2010 Mathcenter Contest, 1

Tags: algebra , function
A function $ f: R^3\rightarrow R$ for all reals $ a,b,c,d,e$ satisfies a condition: \[ f(a,b,c)\plus{}f(b,c,d)\plus{}f(c,d,e)\plus{}f(d,e,a)\plus{}f(e,a,b)\equal{}a\plus{}b\plus{}c\plus{}d\plus{}e\] Show that for all reals $ x_1,x_2,\ldots,x_n$ ($ n\geq 5$) equality holds: \[ f(x_1,x_2,x_3)\plus{}f(x_2,x_3,x_4)\plus{}\ldots \plus{}f(x_{n\minus{}1},x_n,x_1)\plus{}f(x_n,x_1,x_2)\equal{}x_1\plus{}x_2\plus{}\ldots\plus{}x_n\]

1966 IMO Shortlist, 31

Solve the equation $|x^2 -1|+ |x^2 - 4| = mx$ as a function of the parameter $m$. Which pairs $(x,m)$ of integers satisfy this equation?

2015 District Olympiad, 3

Find all continuous and nondecreasing functions $ f:[0,\infty)\longrightarrow\mathbb{R} $ that satisfy the inequality: $$ \int_0^{x+y} f(t) dt\le \int_0^x f(t) dt +\int_0^y f(t) dt,\quad\forall x,y\in [0,\infty) . $$

2014 All-Russian Olympiad, 2

Given a function $f\colon \mathbb{R}\rightarrow \mathbb{R} $ with $f(x)^2\le f(y)$ for all $x,y\in\mathbb{R} $, $x>y$, prove that $f(x)\in [0,1] $ for all $x\in \mathbb{R}$.

2019 Jozsef Wildt International Math Competition, W. 14

If $a$, $b$, $c > 0$; $ab + bc + ca = 3$ then: $$4\left(\tan^{-1} 2\right)\left(\tan^{-1}\left(\sqrt[3]{abc}\right)\right) \leq \pi \tan^{-1}\left(1 + \sqrt[3]{abc}\right)$$

2009 Irish Math Olympiad, 1

Tags: function , search
Hamilton Avenue has eight houses. On one side of the street are the houses numbered 1,3,5,7 and directly opposite are houses 2,4,6,8 respectively. An eccentric postman starts deliveries at house 1 and delivers letters to each of the houses, finally returning to house 1 for a cup of tea. Throughout the entire journey he must observe the following rules. The numbers of the houses delivered to must follow an odd-even-odd-even pattern throughout, each house except house 1 is visited exactly once (house 1 is visited twice) and the postman at no time is allowed to cross the road to the house directly opposite. How many different delivery sequences are possible?

2003 IMO Shortlist, 6

Let $f(k)$ be the number of integers $n$ satisfying the following conditions: (i) $0\leq n < 10^k$ so $n$ has exactly $k$ digits (in decimal notation), with leading zeroes allowed; (ii) the digits of $n$ can be permuted in such a way that they yield an integer divisible by $11$. Prove that $f(2m) = 10f(2m-1)$ for every positive integer $m$. [i]Proposed by Dirk Laurie, South Africa[/i]

2013 ELMO Shortlist, 5

Let $a,b,c$ be positive reals satisfying $a+b+c = \sqrt[7]{a} + \sqrt[7]{b} + \sqrt[7]{c}$. Prove that $a^a b^b c^c \ge 1$. [i]Proposed by Evan Chen[/i]

2010 Indonesia TST, 3

Let $ \mathbb{Z}$ be the set of all integers. Define the set $ \mathbb{H}$ as follows: (1). $ \dfrac{1}{2} \in \mathbb{H}$, (2). if $ x \in \mathbb{H}$, then $ \dfrac{1}{1\plus{}x} \in \mathbb{H}$ and also $ \dfrac{x}{1\plus{}x} \in \mathbb{H}$. Prove that there exists a bijective function $ f: \mathbb{Z} \rightarrow \mathbb{H}$.

1977 IMO Longlists, 20

Let $a,b,A,B$ be given reals. We consider the function defined by \[ f(x) = 1 - a \cdot \cos(x) - b \cdot \sin(x) - A \cdot \cos(2x) - B \cdot \sin(2x). \] Prove that if for any real number $x$ we have $f(x) \geq 0$ then $a^2 + b^2 \leq 2$ and $A^2 + B^2 \leq 1.$

2012 Centers of Excellency of Suceava, 2

Tags: limit , function
Calculate $ \lim_{n\to\infty } \frac{f(1)+(f(2))^2+\cdots +(f(n))^n}{(f(n))^n} , $ where $ f:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ is an unbounded and nondecreasing function. [i]Dan Popescu[/i]

2018 USAMO, 2

Tags: function
Find all functions $f:(0,\infty) \rightarrow (0,\infty)$ such that \[f\left(x+\frac{1}{y}\right)+f\left(y+\frac{1}{z}\right) + f\left(z+\frac{1}{x}\right) = 1\] for all $x,y,z >0$ with $xyz =1$.

2012 Romania Team Selection Test, 1

Prove that for any positive integer $n\geq 2$ we have that \[\sum_{k=2}^n \lfloor \sqrt[k]{n}\rfloor=\sum_{k=2}^n\lfloor\log_{k}n\rfloor.\]

2007 District Olympiad, 1

Tags: function , algebra
We say that a function $f: \mathbb{N}\rightarrow\mathbb{N}$ has the $(\mathcal{P})$ property if, for any $y\in\mathbb{N}$, the equation $f(x)=y$ has exactly 3 solutions. a) Prove that there exist an infinity of functions with the $(\mathcal{P})$ property ; b) Find all monotonously functions with the $(\mathcal{P})$ property ; c) Do there exist monotonously functions $f: \mathbb{Q}\rightarrow\mathbb{Q}$ satisfying the $(\mathcal{P})$ property ?

2009 Baltic Way, 1

A polynomial $p(x)$ of degree $n\ge 2$ has exactly $n$ real roots, counted with multiplicity. We know that the coefficient of $x^n$ is $1$, all the roots are less than or equal to $1$, and $p(2)=3^n$. What values can $p(1)$ take?

2009 China Team Selection Test, 3

Tags: function , algebra
Consider function $ f: R\to R$ which satisfies the conditions for any mutually distinct real numbers $ a,b,c,d$ satisfying $ \frac {a \minus{} b}{b \minus{} c} \plus{} \frac {a \minus{} d}{d \minus{} c} \equal{} 0$, $ f(a),f(b),f(c),f(d)$ are mutully different and $ \frac {f(a) \minus{} f(b)}{f(b) \minus{} f(c)} \plus{} \frac {f(a) \minus{} f(d)}{f(d) \minus{} f(c)} \equal{} 0.$ Prove that function $ f$ is linear

2012 Today's Calculation Of Integral, 817

Define two functions $f(t)=\frac 12\left(t+\frac{1}{t}\right),\ g(t)=t^2-2\ln t$. When real number $t$ moves in the range of $t>0$, denote by $C$ the curve by which the point $(f(t),\ g(t))$ draws on the $xy$-plane. Let $a>1$, find the area of the part bounded by the line $x=\frac 12\left(a+\frac{1}{a}\right)$ and the curve $C$.

1988 IMO Longlists, 39

[b]i.)[/b] Let $g(x) = x^5 + x^4 + x^3 + x^2 + x + 1.$ What is the remainder when the polynomial $g(x^{12}$ is divided by the polynomial $g(x)$? [b]ii.)[/b] If $k$ is a positive number and $f$ is a function such that, for every positive number $x, f(x^2 + 1 )^{\sqrt{x}} = k.$ Find the value of \[ f( \frac{9 +y^2}{y^2})^{\sqrt{ \frac{12}{y} }} \] for every positive number $y.$ [b]iii.)[/b] The function $f$ satisfies the functional equation $f(x) + f(y) = f(x+y) - x \cdot y - 1$ for every pair $x,y$ of real numbers. If $f(1) = 1,$ then find the numbers of integers $n,$ for which $f(n) = n.$

PEN K Problems, 32

Find all functions $f: \mathbb{Z}^{2}\to \mathbb{R}^{+}$ such that for all $i, j \in \mathbb{Z}$: \[f(i,j)=\frac{f(i+1, j)+f(i,j+1)+f(i-1,j)+f(i,j-1)}{4}.\]

1983 AMC 12/AHSME, 8

Tags: function
Let $f(x) = \frac{x+1}{x-1}$. Then for $x^2 \neq 1$, $f(-x)$ is $ \textbf{(A)}\ \frac{1}{f(x)}\qquad\textbf{(B)}\ -f(x)\qquad\textbf{(C)}\ \frac{1}{f(-x)}\qquad\textbf{(D)}\ -f(-x)\qquad\textbf{(E)}\ f(x) $

2013 Today's Calculation Of Integral, 872

Let $n$ be a positive integer. (1) For a positive integer $k$ such that $1\leq k\leq n$, Show that : \[\int_{\frac{k-1}{2n}\pi}^{\frac{k}{2n}\pi} \sin 2nt\cos t\ dt=(-1)^{k+1}\frac{2n}{4n^2-1}(\cos \frac{k}{2n}\pi +\cos \frac{k-1}{2n}\pi).\] (2) Find the area $S_n$ of the part expressed by a parameterized curve $C_n: x=\sin t,\ y=\sin 2nt\ (0\leq t\leq \pi).$ If necessary, you may use ${\sum_{k=1}^{n-1} \cos \frac{k}{2n}\pi =\frac 12(\frac{1}{\tan \frac{\pi}{4n}}-1})\ (n\geq 2).$ (3) Find $\lim_{n\to\infty} S_n.$

1987 Traian Lălescu, 1.2

Let $ A $ be a subset of $ \mathbb{R} $ and let be a function $ f:A\longrightarrow\mathbb{R} $ satisfying $$ f(x)-f(y)=(y-x)f(x)f(y),\quad\forall x,y\in A. $$ [b]a)[/b] Show that if $ A=\mathbb{R}, $ then $ f=0. $ [b]b)[/b] Find $ f, $ provided that $ A=\mathbb{R}\setminus\{1\} . $

1998 Brazil Team Selection Test, Problem 3

Find all functions $f: \mathbb N \to \mathbb N$ for which \[ f(n) + f(n+1) = f(n+2)f(n+3)-1996\] holds for all positive integers $n$.

2021 Latvia Baltic Way TST, P16

A function $f:\mathbb{N} \to \mathbb{N}$ is given. If $a,b$ are coprime, then $f(ab)=f(a)f(b)$. Also, if $m,k$ are primes (not necessarily different), then $$f(m+k-3)=f(m)+f(k)-f(3).$$ Find all possible values of $f(11)$.

2012 India PRMO, 18

What is the sum of the squares of the roots of the equation $x^2 -7 \lfloor x\rfloor +5=0$ ?