Found problems: 1513
2001 Rioplatense Mathematical Olympiad, Level 3, 4
Find all functions $f: R \to R$ such that, for any $x, y \in R$:
$f\left( f\left( x \right)-y \right)\cdot f\left( x+f\left( y \right) \right)={{x}^{2}}-{{y}^{2}}$
2017 Azerbaijan BMO TST, 3
Find all funtions $f:\mathbb R\to\mathbb R$ such that: $$f(xy-1)+f(x)f(y)=2xy-1$$ for all $x,y\in \mathbb{R}$.
2019 MMATHS, 4
The continuous function $f(x)$ satisfies $c^2f(x + y) = f(x)f(y)$ for all real numbers $x$ and $y,$ where $c > 0$ is a constant. If $f(1) = c$, find $f(x)$ (with proof).
2019 Slovenia Team Selection Test, 2
Determine all non-negative real numbers $a$, for which $f(a)=0$ for all functions $f: \mathbb{R}_{\ge 0}\to \mathbb{R}_{\ge 0} $, who satisfy the equation $f(f(x) + f(y)) = yf(1 + yf(x))$ for all non-negative real numbers $x$ and $y$.
2004 Singapore Team Selection Test, 3
Find all functions $ f: \mathbb{R} \to \mathbb{R}$ satisfying
\[ f\left(\frac {x \plus{} y}{x \minus{} y}\right) \equal{} \frac {f\left(x\right) \plus{} f\left(y\right)}{f\left(x\right) \minus{} f\left(y\right)}
\]
for all $ x \neq y$.
1996 Korea National Olympiad, 2
Let the $f:\mathbb{N}\rightarrow\mathbb{N}$ be the function such that
(i) For all positive integers $n,$ $f(n+f(n))=f(n)$
(ii) $f(n_o)=1$ for some $n_0$
Prove that $f(n)\equiv 1.$
1981 IMO Shortlist, 7
The function $f(x,y)$ satisfies: $f(0,y)=y+1, f(x+1,0) = f(x,1), f(x+1,y+1)=f(x,f(x+1,y))$ for all non-negative integers $x,y$. Find $f(4,1981)$.
2014 Contests, 4
Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that
\[ m^2 + f(n) \mid mf(m) +n \]
for all positive integers $m$ and $n$.
2010 Contests, 1
Find all function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x,y\in\mathbb{R}$ the following equality holds \[
f(\left\lfloor x\right\rfloor y)=f(x)\left\lfloor f(y)\right\rfloor \] where $\left\lfloor a\right\rfloor $ is greatest integer not greater than $a.$
[i]Proposed by Pierre Bornsztein, France[/i]
2004 Estonia Team Selection Test, 1
Let $k > 1$ be a fixed natural number. Find all polynomials $P(x)$ satisfying the condition $P(x^k) = (P(x))^k$ for all real numbers $x$.
2001 China Team Selection Test, 3
For a given natural number $k > 1$, find all functions $f:\mathbb{R} \to \mathbb{R}$ such that for all $x, y \in \mathbb{R}$, $f[x^k + f(y)] = y +[f(x)]^k$.
1999 IMO, 6
Find all the functions $f: \mathbb{R} \to\mathbb{R}$ such that
\[f(x-f(y))=f(f(y))+xf(y)+f(x)-1\]
for all $x,y \in \mathbb{R} $.
2022 Thailand Mathematical Olympiad, 5
Determine all functions $f:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ that satisfies the equation
$$f\left(\frac{x+y+z}{3},\frac{a+b+c}{3}\right)=f(x,a)f(y,b)f(z,c)$$
for any real numbers $x,y,z,a,b,c$ such that $az+bx+cy\neq ay+bz+cx$.
2012 Belarus Team Selection Test, 2
Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$.
[i]Proposed by Japan[/i]
2002 Singapore Senior Math Olympiad, 1
Let $f: N \to N$ be a function satisfying the following:
$\bullet$ $f(ab) = f(a)f(b)$, whenever the greatest common divisor of $a$ and $b$ is $1$.
$\bullet$ $f(p + q) = f(p)+ f(q)$ whenever $p$ and $q$ are primes.
Determine all possible values of $f(2002)$. Justify your answers.
2011 USA TSTST, 1
Find all real-valued functions $f$ defined on pairs of real numbers, having the following property: for all real numbers $a, b, c$, the median of $f(a,b), f(b,c), f(c,a)$ equals the median of $a, b, c$.
(The [i]median[/i] of three real numbers, not necessarily distinct, is the number that is in the middle when the three numbers are arranged in nondecreasing order.)
2020-IMOC, A1
$\definecolor{A}{RGB}{190,0,60}\color{A}\fbox{A1.}$ Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $$\definecolor{A}{RGB}{80,0,200}\color{A} x^4+y^4+z^4\ge f(xy)+f(yz)+f(zx)\ge xyz(x+y+z)$$holds for all $a,b,c\in\mathbb{R}$.
[i]Proposed by [/i][b][color=#FFFF00]usjl[/color][/b].
[color=#B6D7A8]#1733[/color]
2024 ELMO Shortlist, A7
For some positive integer $n,$ Elmo writes down the equation
\[x_1+x_2+\dots+x_n=x_1+x_2+\dots+x_n.\]
Elmo inserts at least one $f$ to the left side of the equation and adds parentheses to create a valid functional equation. For example, if $n=3,$ Elmo could have created the equation
\[f(x_1+f(f(x_2)+x_3))=x_1+x_2+x_3.\]
Cookie Monster comes up with a function $f: \mathbb{Q}\to\mathbb{Q}$ which is a solution to Elmo's functional equation. (In other words, Elmo's equation is satisfied for all choices of $x_1,\dots,x_n\in\mathbb{Q})$. Is it possible that there is no integer $k$ (possibly depending on $f$) such that $f^k(x)=x$ for all $x$?
[i]Srinivas Arun[/i]
2016 IMO Shortlist, A7
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that $f(0)\neq 0$ and for all $x,y\in\mathbb{R}$,
\[ f(x+y)^2 = 2f(x)f(y) + \max \left\{ f(x^2+y^2), f(x^2)+f(y^2) \right\}. \]
2007 AIME Problems, 14
Let $f(x)$ be a polynomial with real coefficients such that $f(0) = 1,$ $f(2)+f(3)=125,$ and for all $x$, $f(x)f(2x^{2})=f(2x^{3}+x).$ Find $f(5).$
2018 VJIMC, 4
Determine all possible (finite or infinite) values of
\[\lim_{x \to -\infty} f(x)-\lim_{x \to \infty} f(x),\]
if $f:\mathbb{R} \to \mathbb{R}$ is a strictly decreasing continuous function satisfying
\[f(f(x))^4-f(f(x))+f(x)=1\]
for all $x \in \mathbb{R}$.
2009 QEDMO 6th, 12
Find all functions $f: R\to R$, which satisfy the equation $f (xy + f (x)) = xf (y) + f (x)$.
2021 Caucasus Mathematical Olympiad, 8
An infinite table whose rows and columns are numbered with positive integers, is given. For a sequence of functions
$f_1(x), f_2(x), \ldots $ let us place the number $f_i(j)$ into the cell $(i,j)$ of the table (for all $i, j\in \mathbb{N}$).
A sequence $f_1(x), f_2(x), \ldots $ is said to be {\it nice}, if all the numbers in the table are positive integers, and each positive integer appears exactly once. Determine if there exists a nice sequence of functions $f_1(x), f_2(x), \ldots $, such that each $f_i(x)$ is a polynomial of degree 101 with integer coefficients and its leading coefficient equals to 1.
2022 Taiwan TST Round 1, A
Find all $f:\mathbb{Z}\to\mathbb{Z}$ such that
\[f\left(\left\lfloor\frac{f(x)+f(y)}{2}\right\rfloor\right)+f(x)=f(f(y))+\left\lfloor\frac{f(x)+f(y)}{2}\right\rfloor\]
holds for all $x,y\in\mathbb{Z}$.
[i]Proposed by usjl[/i]
1982 IMO Longlists, 32
The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.