This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 622

2017 Auckland Mathematical Olympiad, 2

Two players take turns to write natural numbers on a board. The rules forbid writing numbers greater than $p$ and also divisors of previously written numbers. The player who has no move loses. Determine which player has a winning strategy for $p = 10$ and describe this strategy.

2010 Dutch Mathematical Olympiad, 5

Amber and Brian are playing a game using $2010$ coins. Throughout the game, the coins are divided into a number of piles of at least 1 coin each. A move consists of choosing one or more piles and dividing each of them into two smaller piles. (So piles consisting of only $1$ coin cannot be chosen.) Initially, there is only one pile containing all $2010$ coins. Amber and Brian alternatingly take turns to make a move, starting with Amber. The winner is the one achieving the situation where all piles have only one coin. Show that Amber can win the game, no matter which moves Brian makes.

2013 Denmark MO - Mohr Contest, 1

The figure shows a game board with $16$ squares. At the start of the game, two cars are placed in different squares. Two players $A$ and $B$ alternately take turns, and A starts. In each turn, the player chooses one of the cars and moves it one or more squares to the right. The left-most car may never overtake or land on the same square as the right-most car. The first player which is unable to move loses. [img]https://cdn.artofproblemsolving.com/attachments/1/b/8d6f40fac4983d6aa9bd076392c91a6d200f6a.png[/img] (a) Prove that A can win regardless of how $B$ plays, if the two cars start as shown in the figure. (b) Determine all starting positions in which $B$ can win regardless of how $A$ plays.

1983 Tournament Of Towns, (052) 5

A set $A$ of squares is given on a chessboard which is infinite in all directions. On each square of this chessboard which does not belong to $A$ there is a king. On a command all kings may be moved in such a way that each king either remains on its square or is moved to an adjacent square, which may have been occupied by another king before the command. Each square may be occupied by at most one king. Does there exist such a number $k$ and such a way of moving the kings that after $k$ moves the kings will occupy all squares of the chessboard? Consider the following cases: (a) $A$ is the set of all squares, both of whose coordinates are multiples of $100$. (There is a horizontal line numbered by the integers from $-\infty$ to $+\infty$, and a similar vertical line. Each square of the chessboard may be denoted by two numbers, its coordinates with respect to these axes.) (b) $A$ is the set of all squares which are covered by $100$ fixed arbitrary queens (i.e. each square covered by at least one queen). Remark: If $A$ consists of just one square, then $k = 1$ and the required way is the following: all kings to the left of the square of $A$ make one move to the right.

2024 Francophone Mathematical Olympiad, 2

Given $n \ge 2$ points on a circle, Alice and Bob play the following game. Initially, a tile is placed on one of the points and no segment is drawn. The players alternate in turns, with Alice to start. In a turn, a player moves the tile from its current position $P$ to one of the $n-1$ other points $Q$ and draws the segment $PQ$. This move is not allowed if the segment $PQ$ is already drawn. If a player cannot make a move, the game is over and the opponent wins. Determine, for each $n$, which of the two players has a winning strategy.

2024-IMOC, C2

Given integer $n \geq 3$. There are $n$ dots marked $1$ to $n$ clockwise on a big circle. And between every two neighboring dots, there is a light. At first, every light were dark. A and B are playing a game, A pick up $n$ pairs from $\{ (i,j)|1 \leq i < j \leq n \}$ and for every pairs $(i,j)$. B starts from the point marked $i$ and choose to walk clockwise or counterclockwise to the point marked $j$. And B invert the status of all passing lights (bright $\leftrightarrow$ dark) A hopes the number of dark light can be as much as possible while B hopes the number of bright light can be as much as possible. Suppose A, B are both smart, how many lights are bright in the end? [i]Proposed by BlessingOfHeaven[/i] [img]https://pbs.twimg.com/profile_images/1014932415201120256/u9KAaMZ4_400x400.jpg[/img]

1994 Bundeswettbewerb Mathematik, 2

Two students $ A$ and $ B$ are playing the following game: Each of them writes down on a sheet of paper a positive integer and gives the sheet to the referee. The referee writes down on a blackboard two integers, one of which is the sum of the integers written by the players. After that, the referee asks student $ A:$ “Can you tell the integer written by the other student?” If A answers “no,” the referee puts the same question to student $ B.$ If $ B$ answers “no,” the referee puts the question back to $ A,$ and so on. Assume that both students are intelligent and truthful. Prove that after a finite number of questions, one of the students will answer “yes.”

2013 Rioplatense Mathematical Olympiad, Level 3, 4

Two players $A$ and $B$ play alternatively in a convex polygon with $n \geq 5$ sides. In each turn, the corresponding player has to draw a diagonal that does not cut inside the polygon previously drawn diagonals. A player loses if after his turn, one quadrilateral is formed such that its two diagonals are not drawn. $A$ starts the game. For each positive integer $n$, find a winning strategy for one of the players.

2022 Thailand TST, 3

A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or [*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter. [i]Proposed by Aron Thomas[/i]

2008 Swedish Mathematical Competition, 5

Anna and Orjan play the following game: they start with a positive integer $n>1$, Anna writes it as the sum of two other positive integers, $n = n_1+n_2$. Orjan deletes one of them, $n_1$ or $n_2$. If the remaining number is larger than $1$, the process is repeated, i.e. Anna writes it as the sum of two positive integers, $ n_3+n_4$, Orjan deletes one of them etc. The game ends when the last number is $1$. Orjan is the winner if there are two equal numbers among the numbers he has deleted, otherwise Anna wins. Who is winning the game if n = 2008 and they both play optimally?

1999 Austrian-Polish Competition, 9

A point in the cartesian plane with integer coordinates is called a lattice point. Consider the following one player game. A finite set of selected lattice points and finite set of selected segments is called a position in this game if the following hold: (i) The endpoints of each selected segment are lattice points; (ii) Each selected segment is parallel to a coordinate axis or to one of the lines $y = \pm x$, (iii) Each selected segment contains exactly five lattice points, all of which are selected, (iv) Every two selected segments have at most one common point. A move in this game consists of selecting a lattice point and a segment such that the new set of selected lattice points and segments is a position. Prove or disprove that there exists an initial position such that the game can have infinitely many moves.

2012 Dutch IMO TST, 2

There are two boxes containing balls. One of them contains $m$ balls, and the other contains $n$ balls, where $m, n > 0$. Two actions are permitted: (i) Remove an equal number of balls from both boxes. (ii) Increase the number of balls in one of the boxes by a factor $k$. Is it possible to remove all of the balls from both boxes with just these two actions, 1. if $k = 2$? 2. if $k = 3$?

1995 Grosman Memorial Mathematical Olympiad, 2

Two players play a game on an infinite board that consists of unit squares. Player $I$ chooses a square and marks it with $O$. Then player $II$ chooses another square and marks it with $X$. They play until one of the players marks a whole row or a whole column of five consecutive squares, and this player wins the game. If no player can achieve this, the result of the game is a tie. Show that player $II$ can prevent player $I$ from winning.

2002 Mongolian Mathematical Olympiad, Problem 6

Tags: game , geometry
Two squares of area $38$ are given. Each of the squares is divided into $38$ connected pieces of unit area by simple curves. Then the two squares are patched together. Show that one can sting the patched squares with $38$ needles so that every piece of each square is stung exactly once.

2016 May Olympiad, 5

Rosa and Sara play with a triangle $ABC$, right at $B$. Rosa begins by marking two interior points of the hypotenuse $AC$, then Sara marks an interior point of the hypotenuse $AC$ different from those of Rosa. Then, from these three points the perpendiculars to the sides $AB$ and $BC$ are drawn, forming the following figure. [img]https://cdn.artofproblemsolving.com/attachments/9/9/c964bbacc4a5960bee170865cc43902410e504.png[/img] Sara wins if the area of the shaded surface is equal to the area of the unshaded surface, in other case wins Rosa. Determine who of the two has a winning strategy.

2018 Puerto Rico Team Selection Test, 4

There are $4$ piles of stones with the following quantities: $1004$, $1005$, $2009$ and $2010$. A legitimate move is to remove a stone from each from $3$ different piles. Two players $A$ and $B$ play in turns. $A$ begins the game . The player who, on his turn, cannot make a legitimate move, loses. Determine which of the players has a winning strategy and give a strategy for that player.

1995 May Olympiad, 1

Veronica, Ana and Gabriela are forming a round and have fun with the following game. One of them chooses a number and says out loud, the one to its left divides it by its largest prime divisor and says the result out loud and so on. The one who says the number out loud $1$ wins , at which point the game ends. Ana chose a number greater than $50$ and less than $100$ and won. Veronica chose the number following the one chosen by Ana and also won. Determine all the numbers that could have been chosen by Ana.

2017 Costa Rica - Final Round, 3

A game consists of a grid of $4\times 4$ and tiles of two colors (Yellow and White). A player chooses a type of token and gives it to the second player who places it where he wants, then the second player chooses a type of token and gives it to the first who places it where he wants, They continue in this way and the one who manages to form a line with three tiles of the same color wins (horizontal, vertical or diagonal and regardless of whether it is the tile you started with or not). Before starting the game, two yellow and two white pieces are already placed as shows the figure below. [img]https://cdn.artofproblemsolving.com/attachments/b/5/ba11377252c278c4154a8c3257faf363430ef7.png[/img] Yolanda and Xinia play a game. If Yolanda starts (choosing the token and giving it to Xinia for this to place) indicate if there is a winning strategy for either of the two players and, if any, describe the strategy.

2020/2021 Tournament of Towns, P3

There are $n{}$ stones in a heap. Two players play the game by alternatively taking either 1 stone from the heap or a prime number of stones which divides the current number of stones in the heap. The player who takes the last stone wins. For which $n{}$ does the first player have a strategy so that he wins no matter how the other player plays? [i]Fedor Ivlev[/i]

2011 Tournament of Towns, 1

There are $n$ coins in a row. Two players take turns picking a coin and flipping it. The location of the heads and tails should not repeat. Loses the one who can not make a move. Which of player can always win, no matter how his opponent plays?

2006 Federal Math Competition of S&M, Problem 4

Milos arranged the numbers $1$ through $49$ into the cells of a $7\times7$ board. Djordje wants to guess the arrangement of the numbers. He can choose a square covering some cells of the board and ask Milos which numbers are found inside that square. At least, how many questions does Djordje need so as to be able to guess the arrangement of the numbers?

2019 Teodor Topan, 4

Tags: discrete , game
Ana choses two real numbers $ y>0,x $ and Bogdan repeatedly tries to guess these in the following manner: at step $ j $ he choses a real number $ b_j, $ asks her if $ b_j=x+jy, $ and she tells him the truth. [b]a)[/b] If $ x=0, $ can Bogdan find Ana's numbers in a finite number of steps? [b]b)[/b] If $ x\neq 0, $ can Bogdan find Ana's numbers in a finite number of steps?

2013 Nordic, 2

In a football tournament there are n teams, with ${n \ge 4}$, and each pair of teams meets exactly once. Suppose that, at the end of the tournament, the final scores form an arithmetic sequence where each team scores ${1}$ more point than the following team on the scoreboard. Determine the maximum possible score of the lowest scoring team, assuming usual scoring for football games (where the winner of a game gets ${3}$ points, the loser ${0}$ points, and if there is a tie both teams get ${1}$ point).

2021 Federal Competition For Advanced Students, P1, 4

On a blackboard, there are $17$ integers not divisible by $17$. Alice and Bob play a game. Alice starts and they alternately play the following moves: $\bullet$ Alice chooses a number $a$ on the blackboard and replaces it with $a^2$ $\bullet$ Bob chooses a number $b$ on the blackboard and replaces it with $b^3$. Alice wins if the sum of the numbers on the blackboard is a multiple of $17$ after a finite number of steps. Prove that Alice has a winning strategy. (Daniel Holmes)

Kvant 2020, M2632

Alice and Bob play the following game. They write some fractions of the form $1/n$, where $n{}$ is positive integer, onto the blackboard. The first move is made by Alice. Alice writes only one fraction in each her turn and Bob writes one fraction in his first turn, two fractions in his second turn, three fractions in his third turn and so on. Bob wants to make the sum of all the fractions on the board to be an integer number after some turn. Can Alice prevent this? [i]Andrey Arzhantsev[/i]