This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 25757

Kettering MO, 2015

[b]p1.[/b] Solve the equation $\log_x (x + 2) = 2$. [b]p2.[/b] Solve the inequality: $0.5^{|x|} > 0.5^{x^2}$. [b]p3.[/b] The integers from 1 to 2015 are written on the blackboard. Two randomly chosen numbers are erased and replaced by their difference giving a sequence with one less number. This process is repeated until there is only one number remaining. Is the remaining number even or odd? Justify your answer. [b]p4.[/b] Four circles are constructed with the sides of a convex quadrilateral as the diameters. Does there exist a point inside the quadrilateral that is not inside the circles? Justify your answer. [b]p5.[/b] Prove that for any finite sequence of digits there exists an integer the square of which begins with that sequence. [b]p6.[/b] The distance from the point $P$ to two vertices $A$ and $B$ of an equilateral triangle are $|P A| = 2$ and $|P B| = 3$. Find the greatest possible value of $|P C|$. PS. You should use hide for answers.

2007 Hanoi Open Mathematics Competitions, 3

Tags: geometry , diagonal
Which of the following is a possible number of diagonals of a convex polygon? (A) $02$ (B) $21$ (C) $32$ (D) $54$ (E) $63$

2019 Brazil Team Selection Test, 3

Tags: geometry
Let $ABC$ be a scalene triangle with circumcircle $\Gamma$. Let $M$ be the midpoint of $BC$. A variable point $P$ is selected in the line segment $AM$. The circumcircles of triangles $BPM$ and $CPM$ intersect $\Gamma$ again at points $D$ and $E$, respectively. The lines $DP$ and $EP$ intersect (a second time) the circumcircles to triangles $CPM$ and $BPM$ at $X$ and $Y$, respectively. Prove that as $P$ varies, the circumcircle of $\triangle AXY$ passes through a fixed point $T$ distinct from $A$.

2020 Middle European Mathematical Olympiad, 3#

Let $ABC$ be an acute scalene triangle with circumcircle $\omega$ and incenter $I$. Suppose the orthocenter $H$ of $BIC$ lies inside $\omega$. Let $M$ be the midpoint of the longer arc $BC$ of $\omega$. Let $N$ be the midpoint of the shorter arc $AM$ of $\omega$. Prove that there exists a circle tangent to $\omega$ at $N$ and tangent to the circumcircles of $BHI$ and $CHI$.

2002 Silk Road, 1

Let $ \triangle ABC$ be a triangle with incircle $ \omega(I,r)$and circumcircle $ \zeta(O,R)$.Let $ l_{a}$ be the angle bisector of $ \angle BAC$.Denote $ P\equal{}l_{a}\cap\zeta$.Let $ D$ be the point of tangency $ \omega$ with $ [BC]$.Denote $ Q\equal{}PD\cap\zeta$.Show that $ PI\equal{}QI$ if $ PD\equal{}r$.

2000 Harvard-MIT Mathematics Tournament, 6

Tags: geometry
What is the area of the largest circle contained in an equilateral triangle of area $8\sqrt3$?

2022 Latvia Baltic Way TST, P9

Let $ABCD$ be a cyclic quadrilateral inscribed in circle $\Omega$. Let the lines $AB$ and $CD$ intersect at $P$, and the lines $AD$ and $BC$ intersect at $Q$. Let then the circumcircle of the triangle $\triangle APQ$ intersect $\Omega$ at $R \neq A$. Prove that the line $CR$ goes through the midpoint of the segment $PQ$.

2016 Kosovo National Mathematical Olympiad, 5

Tags: geometry
In trapezoid $ABCD$ with $AB$ parallel to $CD$ show that : $\frac{|AB|^2-|BC|^2+|AC|^2}{|CD|^2-|AD|^2+|AC|^2}=\frac{|AB|}{|CD|}=\frac{|AB|^2-|AD|^2+|BD|^2}{|CD|^2-|BC|^2+|BD|^2}$

2014 Sharygin Geometry Olympiad, 7

Tags: geometry , circles
Two points on a circle are joined by a broken line shorter than the diameter of the circle. Prove that there exists a diameter which does not intersect this broken line. (Folklor )

2022 ABMC, 2022 Nov

[b]p1.[/b] Calculate $A \cdot B +M \cdot C$, where $A = 1$, $B = 2$, $C = 3$, $M = 13$. [b]p2.[/b] What is the remainder of $\frac{2022\cdot2023}{10}$ ? [b]p3.[/b] Daniel and Bryan are rolling fair $7$-sided dice. If the probability that the sum of the numbers that Daniel and Bryan roll is greater than $11$ can be represented as the fraction $\frac{a}{b}$ where $a$, $b$ are relatively prime positive integers, what is $a + b$? [b]p4.[/b] Billy can swim the breaststroke at $25$ meters per minute, the butterfly at $30$ meters per minute, and the front crawl at $40$ meters per minute. One day, he swam without stopping or slowing down, swimming $1130$ meters. If he swam the butterfly for twice as long as the breaststroke, plus one additional minute, and the front crawl for three times as long as the butterfly, minus eight minutes, for how many minutes did he swim? [b]p5.[/b] Elon Musk is walking around the circumference of Mars trying to find aliens. If the radius of Mars is $3396.2$ km and Elon Musk is $73$ inches tall, the difference in distance traveled between the top of his head and the bottom of his feet in inches can be expressed as $a\pi$ for an integer $a$. Find $a$. ($1$ yard is exactly $0.9144$ meters). [b]p6.[/b] Lukas is picking balls out of his five baskets labeled $1$,$2$,$3$,$4$,$5$. Each basket has $27$ balls, each labeled with the number of its respective basket. What is the least number of times Lukas must take one ball out of a random basket to guarantee that he has chosen at least $5$ balls labeled ”$1$”? If there are no balls in a chosen basket, Lukas will choose another random basket. [b]p7.[/b] Given $35_a = 42_b$, where positive integers $a$, $b$ are bases, find the minimum possible value of the sum $a + b$ in base $10$. [b]p8.[/b] Jason is playing golf. If he misses a shot, he has a $50$ percent chance of slamming his club into the ground. If a club is slammed into the ground, there is an $80$ percent chance that it breaks. Jason has a $40$ percent chance of hitting each shot. Given Jason must successfully hit five shots to win a prize, what is the expected number of clubs Jason will break before he wins a prize? [b]p9.[/b] Circle $O$ with radius $1$ is rolling around the inside of a rectangle with side lengths $5$ and $6$. Given the total area swept out by the circle can be represented as $a + b\pi$ for positive integers $a$, $b$ find $a + b$. [b]p10.[/b] Quadrilateral $ABCD$ has $\angle ABC = 90^o$, $\angle ADC = 120^o$, $AB = 5$, $BC = 18$, and $CD = 3$. Find $AD$. [b]p11.[/b] Raymond is eating huge burgers. He has been trained in the art of burger consumption, so he can eat one every minute. There are $100$ burgers to start with. However, at the end of every $20$ minutes, one of Raymond’s friends comes over and starts making burgers. Raymond starts with $1$ friend. If each of his friends makes $1$ burger every $20$ minutes, after how long in minutes will there be $0$ burgers left for the first time? [b]p12.[/b] Find the number of pairs of positive integers $(a, b)$ and $b\le a \le 2022$ such that $a\cdot lcm(a, b) = b \cdot gcd(a, b)^2$. [b]p13.[/b] Triangle $ABC$ has sides $AB = 6$, $BC = 10$, and $CA = 14$. If a point $D$ is placed on the opposite side of $AC$ from $B$ such that $\vartriangle ADC$ is equilateral, find the length of $BD$. [b]p14.[/b] If the product of all real solutions to the equation $(x-1)(x-2)(x-4)(x-5)(x-7)(x-8) = -x^2+9x-64$ can be written as $\frac{a-b\sqrt{c}}{d}$ for positive integers $a$, $b$, $c$, $d$ where $gcd(a, b, d) = 1$ and $c$ is squarefree, compute $a + b + c + d$. [b]p15.[/b] Joe has a calculator with the keys $1, 2, 3, 4, 5, 6, 7, 8, 9,+,-$. However, Joe is blind. If he presses $4$ keys at random, and the expected value of the result can be written as $\frac{x}{11^4}$ , compute the last $3$ digits of $x$ when $x$ divided by $1000$. (If there are consecutive signs, they are interpreted as the sign obtained when multiplying the two signs values together, e.g $3$,$+$,$-$,$-$, $2$ would return $3 + (-(-(2))) = 3 + 2 = 5$. Also, if a sign is pressed last, it is ignored.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2023 Sharygin Geometry Olympiad, 17

A common external tangent to circles $\omega_1$ and $\omega_2$ touches them at points $T_1, T_2$ respectively. Let $A$ be an arbitrary point on the extension of $T_1T_2$ beyond $T_1$, and $B$ be a point on the extension of $T_1T_2$ beyond $T_2$ such that $AT_1 = BT_2$. The tangents from $A$ to $\omega_1$ and from $B$ to $\omega_2$ distinct from $T_1T_2$ meet at point $C$. Prove that all nagelians of triangles $ABC$ from $C$ have a common point.

2006 National Olympiad First Round, 13

Let $D$ be a point on the side $[AB]$ of the isosceles triangle $ABC$ such that $|AB|=|AC|$. The parallel line to $BC$ passing through $D$ intersects $AC$ at $E$. If $m(\widehat A) = 20^\circ$, $|DE|=1$, $|BC|=a$, and $|BE|=a+1$, then which of the followings is equal to $|AB|$? $ \textbf{(A)}\ 2a \qquad\textbf{(B)}\ a^2-a \qquad\textbf{(C)}\ a^2+1 \qquad\textbf{(D)}\ (a+1)^2 \qquad\textbf{(E)}\ a^2+a $

2023 Iranian Geometry Olympiad, 2

Tags: geometry
A convex hexagon $ABCDEF$ with an interior point $P$ is given. Assume that $BCEF$ is a square and both $ABP$ and $PCD$ are right isosceles triangles with right angles at $B$ and $C$, respectively. Lines $AF$ and $DE$ intersect at $G$. Prove that $GP$ is perpendicular to $BC$. [i]Proposed by Patrik Bak - Slovakia[/i]

2018 Malaysia National Olympiad, A4

Tags: octagon , area , geometry
Given a regular octagon $ABCDEFGH$ with side length $3$. By drawing the four diagonals $AF$, $BE$, $CH$, and $DG$, the octagon is divided into a square, four triangles, and four rectangles. Find the sum of the areas of the square and the four triangles.

1996 Moldova Team Selection Test, 6

In triangle $ABC$ the angle $C$ is obtuse, $m(\angle A)=2m(\angle B)$ and the sidelengths are integers. Find the smallest possible perimeter of this triangle.

2018 Regional Olympiad of Mexico Northeast, 6

Tags: geometry
Let $ABC$ be a triangle with $AB < AC$ and $M$ the midpoint of the arc $BC$ containing $A$, plus $T$ the foot of the perpendicular from $M$ on side $AC$. Prove that $AB + AT = TC$. [img]https://cdn.artofproblemsolving.com/attachments/0/a/5c90d7001f73c2f8ff2b0e69078f9a2a5cd606.png[/img]

2014 District Olympiad, 3

Tags: incenter , geometry
The points $M, N,$ and $P$ are chosen on the sides $BC, CA$ and $AB$ of the $\Delta ABC$ such that $BM=BP$ and $CM=CN$. The perpendicular dropped from $B$ to $MP$ and the perpendicular dropped from $C$ to $MN$ intersect at $I$. Prove that the angles $\measuredangle{IPA}$ and $\measuredangle{INC}$ are congruent.

2016 Bosnia And Herzegovina - Regional Olympiad, 3

$h_a$, $h_b$ and $h_c$ are altitudes, $t_a$, $t_b$ and $t_c$ are medians of acute triangle, $r$ radius of incircle, and $R$ radius of circumcircle of acute triangle $ABC$. Prove that $$\frac{t_a}{h_a}+\frac{t_b}{h_b}+\frac{t_c}{h_c} \leq 1+ \frac{R}{r}$$

2009 Oral Moscow Geometry Olympiad, 5

A treasure is buried at some point on a round island with a radius of $1$ km. On the coast of the island there is a mathematician with a device that indicates the direction to the treasure when the distance to the treasure does not exceed $500$ m. In addition, the mathematician has a map of the island, on which he can record all his movements, perform measurements and geometric constructions. The mathematician claims that he has an algorithm for how to get to the treasure after walking less than $4$ km. Could this be true? (B. Frenkin)

2000 Vietnam National Olympiad, 2

Tags: geometry
Find all integers $ n \ge 3$ such that there are $ n$ points in space, with no three on a line and no four on a circle, such that all the circles pass through three points between them are congruent.

1965 AMC 12/AHSME, 16

Let line $ AC$ be perpendicular to line $ CE$. Connect $ A$ to $ D$, the midpoint of $ CE$, and connect $ E$ to $ B$, the midpoint of $ AC$. If $ AD$ and $ EB$ intersect in point $ F$, and $ \overline{BC} \equal{} \overline{CD} \equal{} 15$ inches, then the area of triangle $ DFE$, in square inches, is: $ \textbf{(A)}\ 50 \qquad \textbf{(B)}\ 50\sqrt {2} \qquad \textbf{(C)}\ 75 \qquad \textbf{(D)}\ \frac {15}{2}\sqrt {105} \qquad \textbf{(E)}\ 100$

2022 Princeton University Math Competition, 2

Tags: geometry
A triangle $\vartriangle A_0A_1A_2$ in the plane has sidelengths $A_0A_1 = 7$,$A_1A_2 = 8$,$A_2A_0 = 9$. For $i \ge 0$, given $\vartriangle A_iA_{i+1}A_{i+2}$, let $A_{i+3}$ be the midpoint of $A_iA_{i+1}$ and let Gi be the centroid of $\vartriangle A_iA_{i+1}A_{i+2}$. Let point $G$ be the limit of the sequence of points $\{G_i\}^{\infty}_{i=0}$. If the distance between $G$ and $G_0$ can be written as $\frac{a\sqrt{b}}{c}$ , where $a, b, c$ are positive integers such that $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime, find $a^2 + b^2 + c^2$.

1973 Polish MO Finals, 3

A polyhedron $W$ has the following properties: (i) It possesses a center of symmetry. (ii) The section of $W$ by a plane passing through the center of symmetry and one of its edges is always a parallelogram. (iii) There is a vertex of $W$ at which exactly three edges meet. Prove that $W$ is a parallelepiped.

2011 Puerto Rico Team Selection Test, 5

Tags: geometry
Point A, which is within an acute, is reflected with respect to both sides of angle A to obtain the points B and C. the segment BC intersects the sides of angle A at points D and E respectively. Prove that BC/2>DE.

LMT Team Rounds 2010-20, 2013

[b]p1.[/b] Alan leaves home when the clock in his cardboard box says $7:35$ AM and his watch says $7:41$ AM. When he arrives at school, his watch says $7:47$ AM and the $7:45$ AM bell rings. Assuming the school clock, the watch, and the home clock all go at the same rate, how many minutes behind the school clock is the home clock? [b]p2.[/b] Compute $$\left( \frac{2012^{2012-2013} + 2013}{2013} \right) \times 2012.$$ Express your answer as a mixed number. [b]p3.[/b] What is the last digit of $$2^{3^{4^{5^{6^{7^{8^{9^{...^{2013}}}}}}}}} ?$$ [b]p4.[/b] Let $f(x)$ be a function such that $f(ab) = f(a)f(b)$ for all positive integers $a$ and $b$. If $f(2) = 3$ and $f(3) = 4$, find $f(12)$. [b]p5.[/b] Circle $X$ with radius $3$ is internally tangent to circle $O$ with radius $9$. Two distinct points $P_1$ and $P_2$ are chosen on $O$ such that rays $\overrightarrow{OP_1}$ and $\overrightarrow{OP_2}$ are tangent to circle $X$. What is the length of line segment $P_1P_2$? [b]p6.[/b] Zerglings were recently discovered to use the same $24$-hour cycle that we use. However, instead of making $12$-hour analog clocks like humans, Zerglings make $24$-hour analog clocks. On these special analog clocks, how many times during $ 1$ Zergling day will the hour and minute hands be exactly opposite each other? [b]p7.[/b] Three Small Children would like to split up $9$ different flavored Sweet Candies evenly, so that each one of the Small Children gets $3$ Sweet Candies. However, three blind mice steal one of the Sweet Candies, so one of the Small Children can only get two pieces. How many fewer ways are there to split up the candies now than there were before, assuming every Sweet Candy is different? [b]p8.[/b] Ronny has a piece of paper in the shape of a right triangle $ABC$, where $\angle ABC = 90^o$, $\angle BAC = 30^o$, and $AC = 3$. Holding the paper fixed at $A$, Ronny folds the paper twice such that after the first fold, $\overline{BC}$ coincides with $\overline{AC}$, and after the second fold, $C$ coincides with $A$. If Ronny initially marked $P$ at the midpoint of $\overline{BC}$, and then marked $P'$ as the end location of $P$ after the two folds, find the length of $\overline{PP'}$ once Ronny unfolds the paper. [b]p9.[/b] How many positive integers have the same number of digits when expressed in base $3$ as when expressed in base $4$? [b]p10.[/b] On a $2 \times 4$ grid, a bug starts at the top left square and arbitrarily moves north, south, east, or west to an adjacent square that it has not already visited, with an equal probability of moving in any permitted direction. It continues to move in this way until there are no more places for it to go. Find the expected number of squares that it will travel on. Express your answer as a mixed number. PS. You had better use hide for answers.