This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 801

2021 Macedonian Team Selection Test, Problem 3

A group of people is said to be [i]good[/i] if every member has an even number (zero included) of acquaintances in it. Prove that any group of people can be partitioned into two (possibly empty) parts such that each part is good.

2017 Korea Junior Math Olympiad, 8

For a positive integer $n$, there is a school with $n$ people. For a set $X$ of students in this school, if any two students in $X$ know each other, we call $X$ [i]well-formed[/i]. If the maximum number of students in a well-formed set is $k$, show that the maximum number of well-formed sets is not greater than $3^{(n+k)/3}$. Here, an empty set and a set with one student is regarded as well-formed as well.

2016 Poland - Second Round, 6

$n$ ($n \ge 4$) green points are in a data space and no $4$ green points lie on one plane. Some segments which connect green points have been colored red. Number of red segments is even. Each two green points are connected with polyline which is build from red segments. Show that red segments can be split on pairs, such that segments from one pair have common end.

Russian TST 2017, P3

Let $K=(V, E)$ be a finite, simple, complete graph. Let $\phi: E \to \mathbb{R}^2$ be a map from the edge set to the plane, such that the preimage of any point in the range defines a connected graph on the entire vertex set $V$, and the points assigned to the edges of any triangle are collinear. Show that the range of $\phi$ is contained in a line.

2023 Brazil EGMO Team Selection Test, 4

In the reality show [i]Big Sister Brasil[/i], it is said that there is a [i]treta[/i] if two people are friends with each other and enemies with a third one. For audience purposes, the broadcaster wants a lot of [i]tretas[/i]. If friendship and enmity are reciprocal relationships, given $n$ people, what is the maximum number of [i]tretas[/i]?

2022 Germany Team Selection Test, 1

Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$.

2024 5th Memorial "Aleksandar Blazhevski-Cane", P6

In a group of $2n$ students, each student has exactly $3$ friends within the group. The friendships are mutual and for each two students $A$ and $B$ which are not friends, there is a sequence $C_1, C_2, ..., C_r$ of students such that $A$ is a friend of $C_1$, $C_1$ is a friend of $C_2$, et cetera, and $C_r$ is a friend of $B$. Every student was asked to assess each of his three friendships with: "acquaintance", "friend" and "BFF". It turned out that each student either gave the same assessment to all of his friends or gave every assessment exactly once. We say that a pair of students is in conflict if they gave each other different assessments. Let $D$ be the set of all possible values of the total number of conflicts. Prove that $|D| \geq 3n$ with equality if and only if the group can be partitioned into two subsets such that each student is separated from all of his friends.

2023 Turkey EGMO TST, 5

In a school there is a person with $l$ friends for all $1 \leq l \leq 99$. If there is no trio of students in this school, all three of whom are friends with each other, what is the minimum number of students in the school?

2021 China Team Selection Test, 1

Given positive integer $ n \ge 5 $ and a convex polygon $P$, namely $ A_1A_2...A_n $. No diagonals of $P$ are concurrent. Proof that it is possible to choose a point inside every quadrilateral $ A_iA_jA_kA_l (1\le i<j<k<l\le n) $ not on diagonals of $P$, such that the $ \tbinom{n}{4} $ points chosen are distinct, and any segment connecting these points intersect with some diagonal of P.

2004 All-Russian Olympiad, 2

A country has 1001 cities, and each two cities are connected by a one-way street. From each city exactly 500 roads begin, and in each city 500 roads end. Now an independent republic splits itself off the country, which contains 668 of the 1001 cities. Prove that one can reach every other city of the republic from each city of this republic without being forced to leave the republic.

2001 Hungary-Israel Binational, 5

Here $G_{n}$ denotes a simple undirected graph with $n$ vertices, $K_{n}$ denotes the complete graph with $n$ vertices, $K_{n,m}$ the complete bipartite graph whose components have $m$ and $n$ vertices, and $C_{n}$ a circuit with $n$ vertices. The number of edges in the graph $G_{n}$ is denoted $e(G_{n})$. (a) Let $p$ be a prime. Consider the graph whose vertices are the ordered pairs $(x, y)$ with $x, y \in\{0, 1, . . . , p-1\}$ and whose edges join vertices $(x, y)$ and $(x' , y')$ if and only if $xx'+yy'\equiv 1 \pmod{p}$ . Prove that this graph does not contain $C_{4}$ . (b) Prove that for infinitely many values $n$ there is a graph $G_{n}$ with $e(G_{n}) \geq \frac{n\sqrt{n}}{2}-n$ that does not contain $C_{4}$.

2002 ITAMO, 6

We are given a chessboard with 100 rows and 100 columns. Two squares of the board are said to be adjacent if they have a common side. Initially all squares are white. a) Is it possible to colour an odd number of squares in such a way that each coloured square has an odd number of adjacent coloured squares? b) Is it possible to colour some squares in such a way that an odd number of them have exactly $4$ adjacent coloured squares and all the remaining coloured squares have exactly $2$ adjacent coloured squares? c) Is it possible to colour some squares in such a way that an odd number of them have exactly $2$ adjacent coloured squares and all the remaining coloured squares have exactly $4$ adjacent coloured squares?

2022 IFYM, Sozopol, 7

A graph $ G$ with $ n$ vertices is given. Some $ x$ of its edges are colored red so that each triangle has at most one red edge. The maximum number of vertices in $ G$ that induce a bipartite graph equals $ y.$ Prove that $ n\ge 4x/y.$

2015 Iran Team Selection Test, 5

Let $A$ be a subset of the edges of an $n\times n $ table. Let $V(A)$ be the set of vertices from the table which are connected to at least on edge from $A$ and $j(A)$ be the number of the connected components of graph $G$ which it's vertices are the set $V(A)$ and it's edges are the set $A$. Prove that for every natural number $l$: $$\frac{l}{2}\leq min_{|A|\geq l}(|V(A)|-j(A)) \leq \frac{l}{2}+\sqrt{\frac{l}{2}}+1$$

2011 Turkey Team Selection Test, 2

Graphistan has $2011$ cities and Graph Air (GA) is running one-way flights between all pairs of these cities. Determine the maximum possible value of the integer $k$ such that no matter how these flights are arranged it is possible to travel between any two cities in Graphistan riding only GA flights as long as the absolute values of the difference between the number of flights originating and terminating at any city is not more than $k.$

2005 All-Russian Olympiad, 4

A white plane is partitioned onto cells (in a usual way). A finite number of cells are coloured black. Each black cell has an even (0, 2 or 4) adjacent (by the side) white cells. Prove that one may colour each white cell in green or red such that every black cell will have equal number of red and green adjacent cells.

1990 Czech and Slovak Olympiad III A, 5

In a country every two towns are connected by exactly one one-way road. Each road is intended either for cars or for cyclists. The roads cross only in towns, otherwise interchanges are used as road junctions. Show that there is a town from which you can go to any other town without changing the means of transport.

2025 India STEMS Category B, 2

Alice and Bob play a game on a connected graph with $2n$ vertices, where $n\in \mathbb{N}$ and $n>1$.. Alice and Bob have tokens named A and B respectively. They alternate their turns with Alice going first. Alice gets to decide the starting positions of A and B. Every move, the player with the turn moves their token to an adjacent vertex. Bob's goal is to catch Alice, and Alice's goal is to prevent this. Note that positions of A, B are visible to both Alice and Bob at every moment. Provided they both play optimally, what is the maximum possible number of edges in the graph if Alice is able to evade Bob indefinitely? [i]Proposed by Shashank Ingalagavi and Vighnesh Sangle[/i]

2012 Putnam, 3

A round-robin tournament among $2n$ teams lasted for $2n-1$ days, as follows. On each day, every team played one game against another team, with one team winning and one team losing in each of the $n$ games. Over the course of the tournament, each team played every other team exactly once. Can one necessarily choose one winning team from each day without choosing any team more than once?

2021 China Team Selection Test, 1

Given positive integer $ n \ge 5 $ and a convex polygon $P$, namely $ A_1A_2...A_n $. No diagonals of $P$ are concurrent. Proof that it is possible to choose a point inside every quadrilateral $ A_iA_jA_kA_l (1\le i<j<k<l\le n) $ not on diagonals of $P$, such that the $ \tbinom{n}{4} $ points chosen are distinct, and any segment connecting these points intersect with some diagonal of P.

2023 Romanian Master of Mathematics, 6

Let $r,g,b$ be non negative integers and $\Gamma$ be a connected graph with $r+g+b+1$ vertices. Its edges are colored in red green and blue. It turned out that $\Gamma $ contains A spanning tree with exactly $r$ red edges. A spanning tree with exactly $g$ green edges. A spanning tree with exactly $b$ blue edges. Prove that $\Gamma$ contains a spanning tree with exactly $r$ red edges, $g$ green edges and $b$ blue edges.

2017 Saint Petersburg Mathematical Olympiad, 7

In a country, some pairs of cities are connected by one-way roads. It turns out that every city has at least two out-going and two in-coming roads assigned to it, and from every city one can travel to any other city by a sequence of roads. Prove that it is possible to delete a cyclic route so that it is still possible to travel from any city to any other city.

2013 Tuymaada Olympiad, 4

The vertices of a connected graph cannot be coloured with less than $n+1$ colours (so that adjacent vertices have different colours). Prove that $\dfrac{n(n-1)}{2}$ edges can be removed from the graph so that it remains connected. [i]V. Dolnikov[/i] [b]EDIT.[/b] It is confirmed by the official solution that the graph is tacitly assumed to be [b]finite[/b].

2020 Romanian Masters In Mathematics, 3

Let $n\ge 3$ be an integer. In a country there are $n$ airports and $n$ airlines operating two-way flights. For each airline, there is an odd integer $m\ge 3$, and $m$ distinct airports $c_1, \dots, c_m$, where the flights offered by the airline are exactly those between the following pairs of airports: $c_1$ and $c_2$; $c_2$ and $c_3$; $\dots$ ; $c_{m-1}$ and $c_m$; $c_m$ and $c_1$. Prove that there is a closed route consisting of an odd number of flights where no two flights are operated by the same airline.

2021 Middle European Mathematical Olympiad, 2

Let $m$ and $n$ be positive integers. Some squares of an $m \times n$ board are coloured red. A sequence $a_1, a_2, \ldots , a_{2r}$ of $2r \ge 4$ pairwise distinct red squares is called a [i]bishop circuit[/i] if for every $k \in \{1, \ldots , 2r \}$, the squares $a_k$ and $a_{k+1}$ lie on a diagonal, but the squares $a_k$ and $a_{k+2}$ do not lie on a diagonal (here $a_{2r+1}=a_1$ and $a_{2r+2}=a_2$). In terms of $m$ and $n$, determine the maximum possible number of red squares on an $m \times n$ board without a bishop circuit. ([i]Remark.[/i] Two squares lie on a diagonal if the line passing through their centres intersects the sides of the board at an angle of $45^\circ$.)