Found problems: 583
2016 Greece Team Selection Test, 4
For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.
2013 Romania Team Selection Test, 1
Suppose that $a$ and $b$ are two distinct positive real numbers such that $\lfloor na\rfloor$ divides $\lfloor nb\rfloor$ for any positive integer $n$. Prove that $a$ and $b$ are positive integers.
2011 Czech-Polish-Slovak Match, 2
Written on a blackboard are $n$ nonnegative integers whose greatest common divisor is $1$. A [i]move[/i] consists of erasing two numbers $x$ and $y$, where $x\ge y$, on the blackboard and replacing them with the numbers $x-y$ and $2y$. Determine for which original $n$-tuples of numbers on the blackboard is it possible to reach a point, after some number of moves, where $n-1$ of the numbers of the blackboard are zeroes.
2004 USAMTS Problems, 5
Medians $AD$, $BE$, and $CF$ of triangle $ABC$ meet at $G$ as shown. Six small triangles, each with vertex at $G$, are formed. We draw the circles inscribed in triangles $AFG$, $BDG$, and $CDG$ as shown. Prove that if these three circles are all congruent, then $ABC$ is equilateral.
[asy]
size(200);
defaultpen(fontsize(10));
pair C=origin, B=(12,0), A=(3,14), D=midpoint(B--C), E=midpoint(A--C), F=midpoint(A--B), G=centroid(A,B,C);
draw(A--B--C--A--D^^B--E^^C--F);
draw(incircle(C,G,D)^^incircle(G,D,B)^^incircle(A,F,G));
pair point=G;
label("$A$", A, dir(point--A));
label("$B$", B, dir(point--B));
label("$C$", C, dir(point--C));
label("$D$", D, dir(point--D));
label("$E$", E, dir(point--E));
label("$F$", F, dir(point--F));
label("$G$", G, dir(7));[/asy]
Russian TST 2016, P2
For a finite set $A$ of positive integers, a partition of $A$ into two disjoint nonempty subsets $A_1$ and $A_2$ is $\textit{good}$ if the least common multiple of the elements in $A_1$ is equal to the greatest common divisor of the elements in $A_2$. Determine the minimum value of $n$ such that there exists a set of $n$ positive integers with exactly $2015$ good partitions.
2014 Saudi Arabia GMO TST, 2
Let $p \ge 2$ be a prime number and $\frac{a_p}{b_p}= 1 +\frac12+ .. +\frac{1}{p^2 -1}$, where $a_p$ and $b_p$ are two relatively prime positive integers. Compute gcd $(p, b_p)$.
1991 IMO Shortlist, 10
Suppose $ \,G\,$ is a connected graph with $ \,k\,$ edges. Prove that it is possible to label the edges $ 1,2,\ldots ,k\,$ in such a way that at each vertex which belongs to two or more edges, the greatest common divisor of the integers labeling those edges is equal to 1.
[b]Note: Graph-Definition[/b]. A [b]graph[/b] consists of a set of points, called vertices, together with a set of edges joining certain pairs of distinct vertices. Each pair of vertices $ \,u,v\,$ belongs to at most one edge. The graph $ G$ is connected if for each pair of distinct vertices $ \,x,y\,$ there is some sequence of vertices $ \,x \equal{} v_{0},v_{1},v_{2},\cdots ,v_{m} \equal{} y\,$ such that each pair $ \,v_{i},v_{i \plus{} 1}\;(0\leq i < m)\,$ is joined by an edge of $ \,G$.
2014 Romania Team Selection Test, 4
Let $n$ be a positive integer and let $A_n$ respectively $B_n$ be the set of nonnegative integers $k<n$ such that the number of distinct prime factors of $\gcd(n,k)$ is even (respectively odd). Show that $|A_n|=|B_n|$ if $n$ is even and $|A_n|>|B_n|$ if $n$ is odd.
Example: $A_{10} = \left\{ 0,1,3,7,9 \right\}$, $B_{10} = \left\{ 2,4,5,6,8 \right\}$.
2018 SIMO, Q1
Find all functions $f:\mathbb{N}\setminus\{1\} \rightarrow\mathbb{N}$ such that for all distinct $x,y\in \mathbb{N}$ with $y\ge 2018$, $$\gcd(f(x),y)\cdot \mathrm{lcm}(x,f(y))=f(x)f(y).$$
1987 Greece National Olympiad, 1
a) Prove that every sub-group $(A,+)$ of group $(\mathbb{Z},+)$ is in the form $A=n \cdot \mathbb{Z}$ for some $n \in \mathbb{Z}$ where $n \cdot \mathbb{Z}=\{n \cdot x/x\in\mathbb{Z}\}$.
b) Using problem (a) , prove that the greatest common divisor $d$ of non zero integers $a_1, a_2,... ,a_n$ is given by relation $d=\lambda_1a_1+\lambda_2 a_2+...\lambda_n a_n$ with $\lambda_i\in\mathbb{Z}, \,\, i=1,2,...,n$
2012 Traian Lălescu, 3
There are $n$ natural numbers written on a blackboard, where $n\in\mathbb{N},\ n\geq 2$. During each step two chosen numbers $a,b$, having the property that none of them divides the other, are replaced by their greatest common divisor and least common multiple. Prove that after a number of steps, all the numbers on the blackboard cease modifying. Prove that the respective number of steps is at most $(n-1)!$.
2014 India National Olympiad, 3
Let $a,b$ be natural numbers with $ab>2$. Suppose that the sum of their greatest common divisor and least common multiple is divisble by $a+b$. Prove that the quotient is at most $\frac{a+b}{4}$. When is this quotient exactly equal to $\frac{a+b}{4}$
2000 France Team Selection Test, 3
Find all nonnegative integers $x,y,z$ such that $(x+1)^{y+1} + 1= (x+2)^{z+1}$.
2019 CCA Math Bonanza, I4
How many ordered pairs $\left(a,b\right)$ of positive integers are there such that \[\gcd\left(a,b\right)^3=\mathrm{lcm}\left(a,b\right)^2=4^6\] is true?
[i]2019 CCA Math Bonanza Individual Round #4[/i]
Oliforum Contest IV 2013, 1
Given a prime $p$, consider integers $0<a<b<c<d<p$ such that $a^4\equiv b^4\equiv c^4\equiv d^4\pmod{p}$. Show that \[a+b+c+d\mid a^{2013}+b^{2013}+c^{2013}+d^{2013}\]
2009 Middle European Mathematical Olympiad, 10
Suppose that $ ABCD$ is a cyclic quadrilateral and $ CD\equal{}DA$. Points $ E$ and $ F$ belong to the segments $ AB$ and $ BC$ respectively, and $ \angle ADC\equal{}2\angle EDF$. Segments $ DK$ and $ DM$ are height and median of triangle $ DEF$, respectively. $ L$ is the point symmetric to $ K$ with respect to $ M$. Prove that the lines $ DM$ and $ BL$ are parallel.
2024 Macedonian TST, Problem 6
Let \(a,b\) be positive integers such that \(a+1\), \(b+1\), and \(ab\) are perfect squares. Prove that $\gcd(a,b)+1$ is also a perfect square.
2020-IMOC, N6
$\textbf{N6.}$ Let $a,b$ be positive integers. If $a,b$ satisfy that
\begin{align*} \frac{a+1}{b} + \frac{b+1}{a} \end{align*}
is also a positive integer, show that
\begin{align*} \frac{a+b}{gcd(a,b)^2} \end{align*}
is a Fibonacci number.
[i]Proposed by usjl[/i]
1988 Mexico National Olympiad, 5
If $a$ and $b$ are coprime positive integers and $n$ an integer, prove that the greatest common divisor of $a^2+b^2-nab$ and $a+b$ divides $n+2$.
1994 India Regional Mathematical Olympiad, 5
Let $A$ be a set of $16$ positive integers with the property that the product of any two distinct members of $A$ will not exceed 1994. Show that there are numbers $a$ and $b$ in the set $A$ such that the gcd of $a$ and $b$ is greater than 1.
2021 Francophone Mathematical Olympiad, 4
Let $\mathbb{N}_{\geqslant 1}$ be the set of positive integers.
Find all functions $f \colon \mathbb{N}_{\geqslant 1} \to \mathbb{N}_{\geqslant 1}$ such that, for all positive integers $m$ and $n$:
\[\mathrm{GCD}\left(f(m),n\right) + \mathrm{LCM}\left(m,f(n)\right) =
\mathrm{GCD}\left(m,f(n)\right) + \mathrm{LCM}\left(f(m),n\right).\]
Note: if $a$ and $b$ are positive integers, $\mathrm{GCD}(a,b)$ is the largest positive integer that divides both $a$ and $b$, and $\mathrm{LCM}(a,b)$ is the smallest positive integer that is a multiple of both $a$ and $b$.
1998 Flanders Math Olympiad, 1
Prove there exist positive integers a,b,c for which $a+b+c=1998$, the gcd is maximized, and $0<a<b\leq c<2a$.
Find those numbers.
Are they unique?
Mathematical Minds 2023, P8
Prove that if $N{}$ is a large enough positive integer, then for any permutation $\pi_1,\ldots,\pi_N$ of $1,\ldots, N$ at least $11\%$ of the pairs $(i,j)$ of indices from $1{}$ to $N{}$ satisfy $\gcd(i,j)=1=\gcd(\pi_i,\pi_j).$
[i]Proposed by Vlad Spătaru[/i]
2021 Czech-Polish-Slovak Junior Match, 3
Find the number of pairs $(a, b)$ of positive integers with the property that the greatest common divisor of $a$ and $ b$ is equal to $1\cdot 2 \cdot 3\cdot ... \cdot50$, and the least common multiple of $a$ and $ b$ is $1^2 \cdot 2^2 \cdot 3^2\cdot ... \cdot 50^2$.
1978 Romania Team Selection Test, 2
Suppose that $ k,l $ are natural numbers such that $ \gcd (11m-1,k)=\gcd (11m-1, l) , $ for any natural number $ m. $
Prove that there exists an integer $ n $ such that $ k=11^nl. $