This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

1974 Spain Mathematical Olympiad, 5

Let $(G, \cdot )$ be a group and $e$ an identity element. Prove that if all elements $x$ of $G$ satisfy $x\cdot x = e$ then $(G, \cdot)$ is abelian (that is, commutative).

1973 IMO, 2

$G$ is a set of non-constant functions $f$. Each $f$ is defined on the real line and has the form $f(x)=ax+b$ for some real $a,b$. If $f$ and $g$ are in $G$, then so is $fg$, where $fg$ is defined by $fg(x)=f(g(x))$. If $f$ is in $G$, then so is the inverse $f^{-1}$. If $f(x)=ax+b$, then $f^{-1}(x)= \frac{x-b}{a}$. Every $f$ in $G$ has a fixed point (in other words we can find $x_f$ such that $f(x_f)=x_f$. Prove that all the functions in $G$ have a common fixed point.

2006 Mathematics for Its Sake, 3

Let be a group with $ 10 $ elements for which there exist two non-identity elements, $ a,b, $ having the property that $ a^2 $ and $ b^2 $ are the identity. Show that this group is not commutative.

1993 Hungary-Israel Binational, 4

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Let $H \leq G$ and $a, b \in G.$ Prove that $|aH \cap Hb|$ is either zero or a divisor of $|H |.$

2008 USAMO, 6

At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form $ 2^k$ for some positive integer $ k$).

2005 District Olympiad, 4

Let $(A,+,\cdot)$ be a finite unit ring, with $n\geq 3$ elements in which there exist [b]exactly[/b] $\dfrac {n+1}2$ perfect squares (e.g. a number $b\in A$ is called a perfect square if and only if there exists an $a\in A$ such that $b=a^2$). Prove that a) $1+1$ is invertible; b) $(A,+,\cdot)$ is a field. [i]Proposed by Marian Andronache[/i]

2011 N.N. Mihăileanu Individual, 1

Tags: group theory
Let be a set $ A\in (0,\infty )\setminus\{ 1\} $ and two operations $ *,\circ :A^2\longrightarrow A $ defined as $$ x*y=x^{2\log_3 y} ,\quad x\circ y= x^{3\log_2y} , $$ and chosen such that $ (A,*) , (A,\circ ) $ are groups. Prove that these groups are isomorphic. [i]Gabriel Iorgulescu[/i]

1993 Hungary-Israel Binational, 6

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Let $a, b \in G.$ Suppose that $ab^{2}= b^{3}a$ and $ba^{2}= a^{3}b.$ Prove that $a = b = 1.$

2012 IMC, 5

Let $c \ge 1$ be a real number. Let $G$ be an Abelian group and let $A \subset G$ be a finite set satisfying $|A+A| \le c|A|$, where $X+Y:= \{x+y| x \in X, y \in Y\}$ and $|Z|$ denotes the cardinality of $Z$. Prove that \[|\underbrace{A+A+\dots+A}_k| \le c^k |A|\] for every positive integer $k$. [i]Proposed by Przemyslaw Mazur, Jagiellonian University.[/i]

2008 Romania National Olympiad, 3

Let $ A$ be a unitary finite ring with $ n$ elements, such that the equation $ x^n\equal{}1$ has a unique solution in $ A$, $ x\equal{}1$. Prove that a) $ 0$ is the only nilpotent element of $ A$; b) there exists an integer $ k\geq 2$, such that the equation $ x^k\equal{}x$ has $ n$ solutions in $ A$.

2006 Iran MO (3rd Round), 5

For each $n$, define $L(n)$ to be the number of natural numbers $1\leq a\leq n$ such that $n\mid a^{n}-1$. If $p_{1},p_{2},\ldots,p_{k}$ are the prime divisors of $n$, define $T(n)$ as $(p_{1}-1)(p_{2}-1)\cdots(p_{k}-1)$. a) Prove that for each $n\in\mathbb N$ we have $n\mid L(n)T(n)$. b) Prove that if $\gcd(n,T(n))=1$ then $\varphi(n) | L(n)T(n)$.

2010 Iran MO (3rd Round), 3

suppose that $G<S_n$ is a subgroup of permutations of $\{1,...,n\}$ with this property that for every $e\neq g\in G$ there exist exactly one $k\in \{1,...,n\}$ such that $g.k=k$. prove that there exist one $k\in \{1,...,n\}$ such that for every $g\in G$ we have $g.k=k$.(20 points)

2006 Victor Vâlcovici, 3

Tags: group theory
Consider the operation $ * $ on $ \mathbb{R} $ defined as $ x*y=x\sqrt{1+y^2}+y\sqrt{1+x^2} . $ Prove that the real numbers form a group under this operation and it's isomorphic with the additive group of real numbers.

2022 Romania National Olympiad, P4

Let $(R,+,\cdot)$ be a ring with center $Z=\{a\in\mathbb{R}:ar=ra,\forall r\in\mathbb{R}\}$ with the property that the group $U=U(R)$ of its invertible elements is finite. Given that $G$ is the group of automorphisms of the additive group $(R,+),$ prove that \[|G|\geq\frac{|U|^2}{|Z\cap U|}.\][i]Dragoș Crișan[/i]

2014 VJIMC, Problem 2

Let $p$ be a prime number and let $A$ be a subgroup of the multiplicative group $\mathbb F^*_p$ of the finite field $\mathbb F_p$ with $p$ elements. Prove that if the order of $A$ is a multiple of $6$, then there exist $x,y,z\in A$ satisfying $x+y=z$.

2015 District Olympiad, 1

[b]a)[/b] Solve the equation $ x^2-x+2\equiv 0\pmod 7. $ [b]b)[/b] Determine the natural numbers $ n\ge 2 $ for which the equation $ x^2-x+2\equiv 0\pmod n $ has an unique solution modulo $ n. $

2009 IMS, 7

Let $ G$ be a group such that $ G'$ is abelian and each normal and abelian subgroup of $ G$ is finite. Prove that $ G$ is finite.

1972 Spain Mathematical Olympiad, 1

Let $K$ be a ring with unit and $M$ the set of $2 \times 2$ matrices constituted with elements of $K$. An addition and a multiplication are defined in $M$ in the usual way between arrays. It is requested to: a) Check that $M$ is a ring with unit and not commutative with respect to the laws of defined composition. b) Check that if $K$ is a commutative field, the elements of$ M$ that have inverse they are characterized by the condition $ad - bc \ne 0$. c) Prove that the subset of $M$ formed by the elements that have inverse is a multiplicative group.

1979 Miklós Schweitzer, 4

For what values of $ n$ does the group $ \textsl{SO}(n)$ of all orthogonal transformations of determinant $ 1$ of the $ n$-dimensional Euclidean space possess a closed regular subgroup?($ \textsl{G}<\textsl{SO}(n)$ is called $ \textit{regular}$ if for any elements $ x,y$ of the unit sphere there exists a unique $ \varphi \in \textsl{G}$ such that $ \varphi(x)\equal{}y$.) [i]Z. Szabo[/i]

2014 Cezar Ivănescu, 1

Let $ S $ be a nonempty subset of a finite group $ G, $ and $ \left( S^j \right)_{j\ge 1} $ be a sequence of sets defined as $ S^j=\left.\left\{\underbrace{xy\cdots z}_{\text{j terms}} \right| \underbrace{x,y,\cdots ,z}_{\text{j terms}} \in S \right\} . $ Prove that: [b]a)[/b] $ \exists i_0\in\mathbb{N}^*\quad i\ge i_0\implies \left| S^i\right| =\left| S^{1+i}\right| $ [b]b)[/b] $ S^{|G|}\le G $

2016 District Olympiad, 1

A ring $ A $ has property [i](P),[/i] if $ A $ is finite and there exists $ (\{ 0\}\neq R,+)\le (A,+) $ such that $ (U(A),\cdot )\cong (R,+) . $ Show that: [b]a)[/b] If a ring has property [i](P),[/i] then, the number of its elements is even. [b]b)[/b] There are infinitely many rings of distinct order that have property [i](P).[/i]

2009 IMS, 1

$ G$ is a group. Prove that the following are equivalent: 1. All subgroups of $ G$ are normal. 2. For all $ a,b\in G$ there is an integer $ m$ such that $ (ab)^m\equal{}ba$.

2013 Romania National Olympiad, 4

Given $n\ge 2$ a natural number, $(K,+,\cdot )$ a body with commutative property that $\underbrace{1+...+}_{m}1\ne 0,m=2,...,n,f\in K[X]$ a polynomial of degree $n$ and $G$ a subgroup of the additive group $(K,+,\cdot )$, $G\ne K.$Show that there is $a\in K$ so$f(a)\notin G$.

2025 India STEMS Category C, 6

Tags: group theory
Let $G$ be a finite abelian group. There is a magic box $T$. At any point, an element of $G$ may be added to the box and all elements belonging to the subgroup (of $G$) generated by the elements currently inside $T$ are moved from outside $T$ to inside (unless they are already inside). Initially $ T$ contains only the group identity, $1_G$. Alice and Bob take turns moving an element from outside $T$ to inside it. Alice moves first. Whoever cannot make a move loses. Find all $G$ for which Bob has a winning strategy.

2017 CIIM, Problem 3

Let $G$ be a finite abelian group and $f :\mathbb{Z}^+ \to G$ a completely multiplicative function (i.e. $f(mn) = f(m)f(n)$ for any positive integers $m, n$). Prove that there are infinitely many positive integers $k$ such that $f(k) = f(k + 1).$