This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 250

2003 Romania National Olympiad, 4

$ i(L) $ denotes the number of multiplicative binary operations over the set of elements of the finite additive group $ L $ such that the set of elements of $ L, $ along with these additive and multiplicative operations, form a ring. Prove that [b]a)[/b] $ i\left( \mathbb{Z}_{12} \right) =4. $ [b]b)[/b] $ i(A\times B)\ge i(A)i(B) , $ for any two finite commutative groups $ B $ and $ A. $ [b]c)[/b] there exist two sequences $ \left( G_k \right)_{k\ge 1} ,\left( H_k \right)_{k\ge 1} $ of finite commutative groups such that $$ \lim_{k\to\infty }\frac{\# G_k }{i\left( G_k \right)} =0 $$ and $$ \lim_{k\to\infty }\frac{\# H_k }{i\left( H_k \right)} =\infty. $$ [i]Barbu Berceanu[/i]

2012 Grigore Moisil Intercounty, 1

Tags: group theory
[b]a)[/b] Find the group $ H $ that is isomorphic with the multiplicative group of positive real numbers, having an isomorphism $$ \iota :(0,\infty )\longrightarrow H,\quad\iota (x)=\frac{x-1}{x+1} . $$ [b]b)[/b] Calculate the $ 2012\text{-th} $ power of an arbitrary element of $ H. $

2021 Science ON grade XII, 4

Consider a group $G$ with at least $2$ elements and the property that each nontrivial element has infinite order. Let $H$ be a cyclic subgroup of $G$ such that the set $\{xH\mid x\in G\}$ has $2$ elements. \\ $\textbf{(a)}$ Prove that $G$ is cyclic. \\ $\textbf{(b)}$ Does the conclusion from $\textbf{(a)}$ stand true if $G$ contains nontrivial elements of finite order?

1993 Hungary-Israel Binational, 1

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Suppose $k \geq 2$ is an integer such that for all $x, y \in G$ and $i \in \{k-1, k, k+1\}$ the relation $(xy)^{i}= x^{i}y^{i}$ holds. Show that $G$ is Abelian.

1987 Traian Lălescu, 1.1

Describe all groups $ G $ which have the property that: $$ (\forall H\le G)(\forall x,y\in G)(xy\in H\implies (x,y\in H\vee xy=1)) $$

2025 District Olympiad, P1

Let $G$ be a group and $A$ a nonempty subset of $G$. Let $AA=\{xy\mid x,y\in A\}$. [list=a] [*] Prove that if $G$ is finite, then $AA=A$ if and only if $|A|=|AA|$ and $e\in A$. [*] Give an example of a group $G$ and a nonempty subset $A$ of $G$ such that $AA\neq A$, $|AA|=|A|$ and $AA$ is a proper subgroup of $G$. [/list] [i]Mathematical Gazette - Robert Rogozsan[/i]

2008 IMC, 4

We say a triple of real numbers $ (a_1,a_2,a_3)$ is [b]better[/b] than another triple $ (b_1,b_2,b_3)$ when exactly two out of the three following inequalities hold: $ a_1 > b_1$, $ a_2 > b_2$, $ a_3 > b_3$. We call a triple of real numbers [b]special[/b] when they are nonnegative and their sum is $ 1$. For which natural numbers $ n$ does there exist a collection $ S$ of special triples, with $ |S| \equal{} n$, such that any special triple is bettered by at least one element of $ S$?

2014 IMS, 7

Let $G$ be a finite group such that for every two subgroups of it like $H$ and $K$, $H \cong K$ or $H \subseteq K$ or $K \subseteq H$. Prove that we can produce each subgroup of $G$ with 2 elements at most.

2004 Gheorghe Vranceanu, 1

Let $(G,\cdot)$ be a group, and let $H_1,H_2$ be proper subgroups s.t. $H_1\cap H_2=\{e\}$, where $e$ is the identity element of $G$. They also have the following properties: [b]i)[/b] $x\in G\setminus(H_1\cup H_2),y\in H_1\setminus\{e\}\Rightarrow xy\in H_2$ [b]ii)[/b] $x\in G\setminus(H_1\cup H_2),y\in H_2\setminus\{e\}\Rightarrow xy\in H_1$ Prove that: [b]a)[/b] $|H_1|=|H_2|$ [b]b)[/b] $|G|=|H_1|\cdot |H_2|$

2012 France Team Selection Test, 1

Let $n$ and $k$ be two positive integers. Consider a group of $k$ people such that, for each group of $n$ people, there is a $(n+1)$-th person that knows them all (if $A$ knows $B$ then $B$ knows $A$). 1) If $k=2n+1$, prove that there exists a person who knows all others. 2) If $k=2n+2$, give an example of such a group in which no-one knows all others.

2019 Romania National Olympiad, 4

Let $p$ be a prime number. For any $\sigma \in S_p$ (the permutation group of $\{1,2,...,p \}),$ define the matrix $A_{\sigma}=(a_{ij}) \in \mathcal{M}_p(\mathbb{Z})$ as $a_{ij} = \sigma^{i-1}(j),$ where $\sigma^0$ is the identity permutation and $\sigma^k = \underbrace{\sigma \circ \sigma \circ ... \circ \sigma}_k.$ Prove that $D = \{ |\det A_{\sigma}| : \sigma \in S_p \}$ has at most $1+ (p-2)!$ elements.

2024 Miklos Schweitzer, 7

Is it true that if a subgroup $G \leq \text{Sym}(\mathbb{N})$ is $n$-transitive for every positive integer $n$, then every group automorphism of $G$ extends to a group automorphism of $\text{Sym}(\mathbb{N})$?

2000 District Olympiad (Hunedoara), 1

Define the operator " $ * $ " on $ \mathbb{R} $ as $ x*y=x+y+xy. $ [b]a)[/b] Show that $ \mathbb{R}\setminus\{ -1\} , $ along with the operator above, is isomorphic with $ \mathbb{R}\setminus\{ 0\} , $ with the usual multiplication. [b]b)[/b] Determine all finite semigroups of $ \mathbb{R} $ under " $ *. $ " Which of them are groups? [b]c)[/b] Prove that if $ H\subset_{*}\mathbb{R} $ is a bounded semigroup, then $ H\subset [-2, 0]. $

1973 Miklós Schweitzer, 1

We say that the rank of a group $ G$ is at most $ r$ if every subgroup of $ G$ can be generated by at most $ r$ elements. Prove that here exists an integer $ s$ such that for every finite group $ G$ of rank $ 2$ the commutator series of $ G$ has length less than $ s$. [i]J. Erdos[/i]

1967 Miklós Schweitzer, 3

Prove that if an infinite, noncommutative group $ G$ contains a proper normal subgroup with a commutative factor group, then $ G$ also contains an infinite proper normal subgroup. [i]B. Csakany[/i]

PEN H Problems, 49

Show that the only solutions of the equation $x^{3}-3xy^2 -y^3 =1$ are given by $(x,y)=(1,0),(0,-1),(-1,1),(1,-3),(-3,2),(2,1)$.

2005 MOP Homework, 1

We call a natural number 3-partite if the set of its divisors can be partitioned into 3 subsets each with the same sum. Show that there exist infinitely many 3-partite numbers.

2012 China Team Selection Test, 3

$n$ being a given integer, find all functions $f\colon \mathbb{Z} \to \mathbb{Z}$, such that for all integers $x,y$ we have $f\left( {x + y + f(y)} \right) = f(x) + ny$.

2012 Bogdan Stan, 1

Tags: group theory
Find the number of pairs of elements, from a group of order $ 2011, $ such that the square of the first element of the pair is equal to the cube of the second element. [i]Teodor Radu[/i]

1957 Miklós Schweitzer, 10

[b]10.[/b] An Abelian group $G$ is said to have the property $(A)$ if torsion subgroup of $G$ is a direct summand of $G$. Show that if $G$ is an Abelian group such that $nG$ has the property $(A)$ for some positive integer $n$, then $G$ itself has the property $(A)$. [b](A. 13)[/b]

2005 Grigore Moisil Urziceni, 3

Define the operation $ (a,b)\circ (c,d) =(ac,ad+b). $ [b]a)[/b] Prove that $ \left( \mathbb{Q}\setminus\{ 0\}\times\mathbb{Q} ,\circ \right) $ is a group. [b]b)[/b] Let $ H $ be an infinite subgroup of $ \left( \mathbb{Q}\setminus\{ 0\}\times\mathbb{Q} ,\circ \right) $ that is cyclic and doesn't contain any element of the form $ (1,q) , $ where $ q $ is a nonzero rational. Show that there exist two rational numbers $ a,b $ such that $$ H=\left\{ \left.\left( a^n, b\cdot\frac{1-a^n}{1-a} \right)\right| n\in\mathbb{Z} \right\} $$

2011 Iran MO (3rd Round), 1

A regular dodecahedron is a convex polyhedra that its faces are regular pentagons. The regular dodecahedron has twenty vertices and there are three edges connected to each vertex. Suppose that we have marked ten vertices of the regular dodecahedron. [b]a)[/b] prove that we can rotate the dodecahedron in such a way that at most four marked vertices go to a place that there was a marked vertex before. [b]b)[/b] prove that the number four in previous part can't be replaced with three. [i]proposed by Kasra Alishahi[/i]

2013 Princeton University Math Competition, 2

How many ways are there to color the edges of a hexagon orange and black if we assume that two hexagons are indistinguishable if one can be rotated into the other? Note that we are saying the colorings OOBBOB and BOBBOO are distinct; we ignore flips.

2020 Jozsef Wildt International Math Competition, W17

Let $(K,+,\cdot)$ be a field with the property $-x=x^{-1},\forall x\in K,x\ne0$. Prove that: $$(K,+,\cdot)\simeq(\mathbb Z_2,+,\cdot)$$ [i]Proposed by Ovidiu Pop[/i]

2019 LIMIT Category C, Problem 5

Let $G=(S^1,\cdot)$ be a group. Then its nontrivial subgroups $\textbf{(A)}~\text{are necessarily finite}$ $\textbf{(B)}~\text{can be infinite}$ $\textbf{(C)}~\text{can be dense in }S^1$ $\textbf{(D)}~\text{None of the above}$