This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2007 AMC 12/AHSME, 20

The parallelogram bounded by the lines $ y \equal{} ax \plus{} c,y \equal{} ax \plus{} d,y \equal{} bx \plus{} c$ and $ y \equal{} bx \plus{} d$ has area $ 18$. The parallelogram bounded by the lines $ y \equal{} ax \plus{} c,y \equal{} ax \minus{} d,y \equal{} bx \plus{} c,$ and $ y \equal{} bx \minus{} d$ has area $ 72.$ Given that $ a,b,c,$ and $ d$ are positive integers, what is the smallest possible value of $ a \plus{} b \plus{} c \plus{} d$? $ \textbf{(A)}\ 13 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 17$