This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 13

2022 AMC 10, 18

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counterclockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations transformations $T_1, T_2, T_3, \dots, T_n$ returns the point $(1,0)$ back to itself? $\textbf{(A) } 359 \qquad \textbf{(B) } 360\qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721$

2012 Bosnia and Herzegovina Junior BMO TST, 2

Let $\overline{abcd}$ be $4$ digit number, such that we can do transformations on it. If some two neighboring digits are different than $0$, then we can decrease both digits by $1$ (we can transform $9870$ to $8770$ or $9760$). If some two neighboring digits are different than $9$, then we can increase both digits by $1$ (we can transform $9870$ to $9980$ or $9881$). Can we transform number $1220$ to: $a)$ $2012$ $b)$ $2021$

2024 Sharygin Geometry Olympiad, 23

A point $P$ moves along a circle $\Omega$. Let $A$ and $B$ be two fixed points of $\Omega$, and $C$ be an arbitrary point inside $\Omega$. The common external tangents to the circumcircles of triangles $APC$ and $BCP$ meet at point $Q$. Prove that all points $Q$ lie on two fixed lines.

2022 AMC 12/AHSME, 18

Let $T_k$ be the transformation of the coordinate plane that first rotates the plane $k$ degrees counterclockwise around the origin and then reflects the plane across the $y$-axis. What is the least positive integer $n$ such that performing the sequence of transformations transformations $T_1, T_2, T_3, \dots, T_n$ returns the point $(1,0)$ back to itself? $\textbf{(A) } 359 \qquad \textbf{(B) } 360\qquad \textbf{(C) } 719 \qquad \textbf{(D) } 720 \qquad \textbf{(E) } 721$

2007 AMC 12/AHSME, 20

The parallelogram bounded by the lines $ y \equal{} ax \plus{} c,y \equal{} ax \plus{} d,y \equal{} bx \plus{} c$ and $ y \equal{} bx \plus{} d$ has area $ 18$. The parallelogram bounded by the lines $ y \equal{} ax \plus{} c,y \equal{} ax \minus{} d,y \equal{} bx \plus{} c,$ and $ y \equal{} bx \minus{} d$ has area $ 72.$ Given that $ a,b,c,$ and $ d$ are positive integers, what is the smallest possible value of $ a \plus{} b \plus{} c \plus{} d$? $ \textbf{(A)}\ 13 \qquad \textbf{(B)}\ 14 \qquad \textbf{(C)}\ 15 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 17$

1961 All-Soviet Union Olympiad, 5

Consider a $2^k$-tuple of numbers $(a_1,a_2,\dots,a_{2^k})$ all equal to $1$ or $-1$. In one step, we transform it to $(a_1a_2,a_2a_3,\dots,a_{2^k}a_1)$. Prove that eventually, we will obtain a $2^k$-tuple consisting only of $1$'s.

1991 All Soviet Union Mathematical Olympiad, 548

A polygon can be transformed into a new polygon by making a straight cut, which creates two new pieces each with a new edge. One piece is then turned over and the two new edges are reattached. Can repeated transformations of this type turn a square into a triangle?

1991 IMO Shortlist, 29

We call a set $ S$ on the real line $ \mathbb{R}$ [i]superinvariant[/i] if for any stretching $ A$ of the set by the transformation taking $ x$ to $ A(x) \equal{} x_0 \plus{} a(x \minus{} x_0), a > 0$ there exists a translation $ B,$ $ B(x) \equal{} x\plus{}b,$ such that the images of $ S$ under $ A$ and $ B$ agree; i.e., for any $ x \in S$ there is a $ y \in S$ such that $ A(x) \equal{} B(y)$ and for any $ t \in S$ there is a $ u \in S$ such that $ B(t) \equal{} A(u).$ Determine all [i]superinvariant[/i] sets.

1961 All-Soviet Union Olympiad, 5

Consider a quartet of positive numbers $(a,b,c,d)$. In one step, we transform it to $(ab,bc,cd,da)$. Prove that you can never obtain the initial set if neither of $a,b,c,d$ is $1$.

1974 Yugoslav Team Selection Test, Problem 2

Given two directly congruent triangles $ABC$ and $A'B'C'$ in a plane, assume that the circles with centers $C$ and $C'$ and radii $CA$ and $C'A'$ intersect. Denote by $\mathcal M$ the transformation that maps $\triangle ABC$ to $\triangle A'B'C'$. Prove that $\mathcal M$ can be expressed as a composition of at most three rotations in the following way: The first rotation has the center in one of $A,B,C$ and maps $\triangle ABC$ to $\triangle A_1B_1C_1$; The second rotation has the center in one of $A_1,B_1,C_1$, and maps $\triangle A_1B_1C_1$ to $\triangle A_2B_2C_2$; The third rotation has the center in one of $A_2,B_2,C_2$ and maps $\triangle A_2B_2C_2$ to $\triangle A'B'C'$.

1990 IMO Longlists, 14

We call a set $S$ on the real line $R$ "superinvariant", if for any stretching $A$ of the set $S$ by the transformation taking $x$ to $A(x) = x_0 + a(x - x_0)$, where $a > 0$, there exists a transformation $B, B(x) = x + b$, such that the images of $S$ under $A$ and $B$ agree; i.e., for any $x \in S$, there is $y \in S$ such that $A(x) = B(y)$, and for any $t \in S$, there is a $u \in S$ such that $B(t) = A(u).$ Determine all superinvariant sets.

1985 Spain Mathematical Olympiad, 1

Let $f : P\to P$ be a bijective map from a plane $P$ to itself such that: (i) $f (r)$ is a line for every line $r$, (ii) $f (r) $ is parallel to $r$ for every line $r$. What possible transformations can $f$ be?

2006 Korea Junior Math Olympiad, 4

In the coordinate plane, de fine $M = \{(a, b),a,b \in Z\}$. A transformation $S$, which is de fined on $M$, sends $(a,b)$ to $(a + b, b)$. Transformation $T$, also de fined on $M$, sends $(a, b)$ to $(-b, a)$. Prove that for all $(a, b) \in M$, we can use $S,T$ denitely to map it to $(g,0)$.