This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 233

2014 HMNT, 3

The side lengths of a triangle are distinct positive integers. One of the side lengths is a multiple of $42,$ and another is a multiple of $72$. What is the minimum possible length of the third side?

2013 Harvard-MIT Mathematics Tournament, 14

Consider triangle $ABC$ with $\angle A=2\angle B$. The angle bisectors from $A$ and $C$ intersect at $D$, and the angle bisector from $C$ intersects $\overline{AB}$ at $E$. If $\dfrac{DE}{DC}=\dfrac13$, compute $\dfrac{AB}{AC}$.

2016 Harvard-MIT Mathematics Tournament, 1

Tags: hmmt
Let $a$ and $b$ be integers (not necessarily positive). Prove that $a^3+5b^3 \neq 2016$.

2016 Harvard-MIT Mathematics Tournament, 3

The three points $A, B, C$ form a triangle. $AB=4, BC=5, AC=6$. Let the angle bisector of $\angle A$ intersect side $BC$ at $D$. Let the foot of the perpendicular from $B$ to the angle bisector of $\angle A$ be $E$. Let the line through $E$ parallel to $AC$ meet $BC$ at $F$. Compute $DF$.

2016 HMNT, 4

Tags: hmmt
A positive integer is written on each corner of a square such that numbers on opposite vertices are relatively prime while numbers on adjacent vertices are not relatively prime. What is the smallest possible value of the sum of these $4$ numbers?

2011 HMNT, 7

Determine the number of angles $\theta$ between $0$ and $2 \pi$, other than integer multiples of $\pi /2$, such that the quantities $\sin \theta, \cos \theta, $ and $\tan \theta$ form a geometric sequence in some order.

2023 Harvard-MIT Mathematics Tournament, 5

Tags: hmmt
Let $ABC$ be a triangle with $AB = 13, BC = 14, $and$ CA = 15$. Suppose $PQRS$ is a square such that $P$ and $R$ lie on line $BC, Q$ lies on line $CA$, and $S$ lies on line $AB$. Compute the side length of this square.

2016 HMNT, 34-36

Tags: hmmt
34. Find the sum of the ages of everyone who wrote a problem for this year’s HMMT November contest. If your answer is $X$ and the actual value is $Y$ , your score will be $\text{max}(0, 20 - |X - Y|)$ 35. Find the total number of occurrences of the digits $0, 1 \ldots , 9$ in the entire guts round (the official copy). If your answer is $X$ and the actual value is $Y$ , your score will be $\text{max}(0, 20 - \frac{|X-Y|}{2})$ 36. Find the number of positive integers less than $1000000$ which are less than or equal to the sum of their proper divisors. If your answer is $X$ and the actual value is $Y$, your score will be $\text{max}(0, 20 - 80|1 - \frac{X}{Y}|)$ rounded to the nearest integer.

2009 Harvard-MIT Mathematics Tournament, 2

Let $S$ be the sum of all the real coefficients of the expansion of $(1+ix)^{2009}$. What is $\log_2(S)$?

2013 Harvard-MIT Mathematics Tournament, 16

The walls of a room are in the shape of a triangle $ABC$ with $\angle ABC = 90^\circ$, $\angle BAC = 60^\circ$, and $AB=6$. Chong stands at the midpoint of $BC$ and rolls a ball toward $AB$. Suppose that the ball bounces off $AB$, then $AC$, then returns exactly to Chong. Find the length of the path of the ball.

2016 Harvard-MIT Mathematics Tournament, 7

Tags: hmmt
Seven lattice points form a convex heptagon with all sides having distinct lengths. Find the minimum possible value of the sum of the squares of the sides of the heptagon.

2016 HMNT, 16-18

16. Create a cube $C_1$ with edge length $1$. Take the centers of the faces and connect them to form an octahedron $O_1$. Take the centers of the octahedron’s faces and connect them to form a new cube $C_2$. Continue this process infinitely. Find the sum of all the surface areas of the cubes and octahedrons. 17. Let $p(x) = x^2 - x + 1$. Let $\alpha$ be a root of $p(p(p(p(x)))$. Find the value of $$(p(\alpha) - 1)p(\alpha)p(p(\alpha))p(p(p(\alpha))$$ 18. An $8$ by $8$ grid of numbers obeys the following pattern: 1) The first row and first column consist of all $1$s. 2) The entry in the $i$th row and $j$th column equals the sum of the numbers in the $(i - 1)$ by $(j - 1)$ sub-grid with row less than i and column less than $j$. What is the number in the 8th row and 8th column?

2008 AMC 12/AHSME, 24

Triangle $ ABC$ has $ \angle C \equal{} 60^{\circ}$ and $ BC \equal{} 4$. Point $ D$ is the midpoint of $ BC$. What is the largest possible value of $ \tan{\angle BAD}$? $ \textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} \minus{} 3} \qquad \textbf{(E)}\ 1$

2016 HMNT, 5

Tags: hmmt
Steph Curry is playing the following game and he wins if he has exactly $5$ points at some time. Flip a fair coin. If heads, shoot a $3$-point shot which is worth $3$ points. If tails, shoot a free throw which is worth $1$ point. He makes $\frac12$ of his $3$-point shots and all of his free throws. Find the probability he will win the game. (Note he keeps flipping the coin until he has exactly $5$ or goes over $5$ points)

2011 Harvard-MIT Mathematics Tournament, 6

Let $ABCD$ be a cyclic quadrilateral, and suppose that $BC = CD = 2$. Let $I$ be the incenter of triangle $ABD$. If $AI = 2$ as well, find the minimum value of the length of diagonal $BD$.

2016 HMNT, 31-33

Tags: hmmt
31. Define a number to be an anti-palindrome if, when written in base $3$ as $a_na_{n-1}\ldots a_0$, then $a_i+a_{n-i} = 2$ for any $0 \le i \le n$. Find the number of anti-palindromes less than $3^{12}$ such that no two consecutive digits in base 3 are equal. 32. Let $C_{k,n}$ denote the number of paths on the Cartesian plane along which you can travel from $(0, 0)$ to $(k, n)$, given the following rules: 1) You can only travel directly upward or directly rightward 2) You can only change direction at lattice points 3) Each horizontal segment in the path must be at most $99$ units long. Find $$\sum_{j=0}^\infty C_{100j+19,17}$$ 33. Camille the snail lives on the surface of a regular dodecahedron. Right now he is on vertex $P_1$ of the face with vertices $P_1, P_2, P_3, P_4, P_5$. This face has a perimeter of $5$. Camille wants to get to the point on the dodecahedron farthest away from $P_1$. To do so, he must travel along the surface a distance at least $L$. What is $L^2$?

2013 Harvard-MIT Mathematics Tournament, 19

An isosceles trapezoid $ABCD$ with bases $AB$ and $CD$ has $AB=13$, $CD=17$, and height $3$. Let $E$ be the intersection of $AC$ and $BD$. Circles $\Omega$ and $\omega$ are circumscribed about triangles $ABE$ and $CDE$. Compute the sum of the radii of $\Omega$ and $\omega$.

2019 Harvard-MIT Mathematics Tournament, 9

Tessa the hyper-ant has a 2019-dimensional hypercube. For a real number $k$, she calls a placement of nonzero real numbers on the $2^{2019}$ vertices of the hypercube [i]$k$-harmonic[/i] if for any vertex, the sum of all 2019 numbers that are edge-adjacent to this vertex is equal to $k$ times the number on this vertex. Let $S$ be the set of all possible values of $k$ such that there exists a $k$-harmonic placement. Find $\sum_{k \in S} |k|$.

2019 Harvard-MIT Mathematics Tournament, 9

Tags: hmmt , geometry
In a rectangular box $ABCDEFGH$ with edge lengths $AB = AD = 6$ and $AE = 49$, a plane slices through point $A$ and intersects edges $BF$, $FG$, $GH$, $HD$ at points $P$, $Q$, $R$, $S$ respectively. Given that $AP = AS$ and $PQ = QR = RS$, find the area of pentagon $APQRS$.

2019 Harvard-MIT Mathematics Tournament, 10

Tags: algebra , hmmt
Prove that for all positive integers $n$, all complex roots $r$ of the polynomial \[P(x) = (2n)x^{2n} + (2n-1)x^{2n-1} + \dots + (n+1)x^{n+1} + nx^n + (n+1)x^{n-1} + \dots + (2n-1)x + 2n\] lie on the unit circle (i.e. $|r| = 1$).

2013 Harvard-MIT Mathematics Tournament, 13

Tags: inequalities , hmmt
Find the smallest positive integer $n$ such that $\dfrac{5^{n+1}+2^{n+1}}{5^n+2^n}>4.99$.

2012 Harvard-MIT Mathematics Tournament, 8

Let $x_1=y_1=x_2=y_2=1$, then for $n\geq 3$ let $x_n=x_{n-1}y_{n-2}+x_{n-2}y_{n-1}$ and $y_n=y_{n-1}y_{n-2}-x_{n-1}x_{n-2}$. What are the last two digits of $|x_{2012}|?$

2013 Harvard-MIT Mathematics Tournament, 28

Let $z_0+z_1+z_2+\cdots$ be an infinite complex geometric series such that $z_0=1$ and $z_{2013}=\dfrac 1{2013^{2013}}$. Find the sum of all possible sums of this series.

2013 Harvard-MIT Mathematics Tournament, 22

Tags: hmmt
Sherry and Val are playing a game. Sherry has a deck containing $2011$ red cards and $2012$ black cards, shuffled randomly. Sherry flips these cards over one at a time, and before she flips each card over, Val guesses whether it is red or black. If Val guesses correctly, she wins $1$ dollar; otherwise, she loses $1$ dollar. In addition, Val must guess red exactly $2011$ times. If Val plays optimally, what is her expected profit from this game?

2014 HMNT, 3

Compute the greatest common divisor of $4^8 - 1$ and $8^{12} - 1$.