This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 50

2010 Paenza, 6

In space are given two tetrahedra with the same barycenter such that one of them contains the other. For each tetrahedron, we consider the octahedron whose vertices are the midpoints of the tetrahedron's edges. Prove that one of this octahedra contains the other.

2000 AMC 12/AHSME, 25

Eight congruent equilateral triangles, each of a different color, are used to construct a regular octahedron. How many distinguishable ways are there to construct the octahedron? (Two colored octahedrons are distinguishable if neither can be rotated to look just like the other.) [asy]import three; import math; size(180); defaultpen(linewidth(.8pt)); currentprojection=orthographic(2,0.2,1); triple A=(0,0,1); triple B=(sqrt(2)/2,sqrt(2)/2,0); triple C=(sqrt(2)/2,-sqrt(2)/2,0); triple D=(-sqrt(2)/2,-sqrt(2)/2,0); triple E=(-sqrt(2)/2,sqrt(2)/2,0); triple F=(0,0,-1); draw(A--B--E--cycle); draw(A--C--D--cycle); draw(F--C--B--cycle); draw(F--D--E--cycle,dotted+linewidth(0.7));[/asy]$ \textbf{(A)}\ 210 \qquad \textbf{(B)}\ 560 \qquad \textbf{(C)}\ 840 \qquad \textbf{(D)}\ 1260 \qquad \textbf{(E)}\ 1680$

2016 HMNT, 16-18

16. Create a cube $C_1$ with edge length $1$. Take the centers of the faces and connect them to form an octahedron $O_1$. Take the centers of the octahedron’s faces and connect them to form a new cube $C_2$. Continue this process infinitely. Find the sum of all the surface areas of the cubes and octahedrons. 17. Let $p(x) = x^2 - x + 1$. Let $\alpha$ be a root of $p(p(p(p(x)))$. Find the value of $$(p(\alpha) - 1)p(\alpha)p(p(\alpha))p(p(p(\alpha))$$ 18. An $8$ by $8$ grid of numbers obeys the following pattern: 1) The first row and first column consist of all $1$s. 2) The entry in the $i$th row and $j$th column equals the sum of the numbers in the $(i - 1)$ by $(j - 1)$ sub-grid with row less than i and column less than $j$. What is the number in the 8th row and 8th column?

2011 AMC 10, 24

Two distinct regular tetrahedra have all their vertices among the vertices of the same unit cube. What is the volume of the region formed by the intersection of the tetrahedra? $ \textbf{(A)}\ \frac{1}{12}\qquad\textbf{(B)}\ \frac{\sqrt{2}}{12}\qquad\textbf{(C)}\ \frac{\sqrt{3}}{12}\qquad\textbf{(D)}\ \frac{1}{6}\qquad\textbf{(E)}\ \frac{\sqrt{2}}{6} $

2010 Princeton University Math Competition, 5

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

2005 AIME Problems, 10

Given that $O$ is a regular octahedron, that $C$ is the cube whose vertices are the centers of the faces of $O$, and that the ratio of the volume of $O$ to that of $C$ is $\frac{m}{n}$, where $m$ and $n$ are relatively prime integers, find $m+n$.

2007 Tournament Of Towns, 5

From a regular octahedron with edge $1$, cut off a pyramid about each vertex. The base of each pyramid is a square with edge $\frac 13$. Can copies of the polyhedron so obtained, whose faces are either regular hexagons or squares, be used to tile space?

2009 Spain Mathematical Olympiad, 3

Some edges are painted in red. We say that a coloring of this kind is [i]good[/i], if for each vertex of the polyhedron, there exists an edge which concurs in that vertex and is not painted red. Moreover, we say that a coloring where some of the edges of a regular polyhedron is [i]completely good[/i], if in addition to being [i]good[/i], no face of the polyhedron has all its edges painted red. What regular polyhedrons is equal the maximum number of edges that can be painted in a [i]good[/i] color and a [i]completely good[/i]? Explain your answer.

2010 Princeton University Math Competition, 7

A cuboctahedron is a solid with 6 square faces and 8 equilateral triangle faces, with each edge adjacent to both a square and a triangle (see picture). Suppose the ratio of the volume of an octahedron to a cuboctahedron with the same side length is $r$. Find $100r^2$. [asy] // dragon96, replacing // [img]http://i.imgur.com/08FbQs.png[/img] size(140); defaultpen(linewidth(.7)); real alpha=10, x=-0.12, y=0.025, r=1/sqrt(3); path hex=rotate(alpha)*polygon(6); pair A = shift(x,y)*(r*dir(330+alpha)), B = shift(x,y)*(r*dir(90+alpha)), C = shift(x,y)*(r*dir(210+alpha)); pair X = (-A.x, -A.y), Y = (-B.x, -B.y), Z = (-C.x, -C.y); int i; pair[] H; for(i=0; i<6; i=i+1) { H[i] = dir(alpha+60*i);} fill(X--Y--Z--cycle, rgb(204,255,255)); fill(H[5]--Y--Z--H[0]--cycle^^H[2]--H[3]--X--cycle, rgb(203,153,255)); fill(H[1]--Z--X--H[2]--cycle^^H[4]--H[5]--Y--cycle, rgb(255,203,153)); fill(H[3]--X--Y--H[4]--cycle^^H[0]--H[1]--Z--cycle, rgb(153,203,255)); draw(hex^^X--Y--Z--cycle); draw(H[1]--B--H[2]^^H[3]--C--H[4]^^H[5]--A--H[0]^^A--B--C--cycle, linewidth(0.6)+linetype("5 5")); draw(H[0]--Z--H[1]^^H[2]--X--H[3]^^H[4]--Y--H[5]);[/asy]

2013 NZMOC Camp Selection Problems, 4

Let $C$ be a cube. By connecting the centres of the faces of $C$ with lines we form an octahedron $O$. By connecting the centers of each face of $O$ with lines we get a smaller cube $C'$. What is the ratio between the side length of $C$ and the side length of $C'$?

2017 China Team Selection Test, 1

Find out the maximum value of the numbers of edges of a solid regular octahedron that we can see from a point out of the regular octahedron.(We define we can see an edge $AB$ of the regular octahedron from point $P$ outside if and only if the intersection of non degenerate triangle $PAB$ and the solid regular octahedron is exactly edge $AB$.

1989 AMC 12/AHSME, 26

A regular octahedron is formed by joining the centers of adjoining faces of a cube. The ratio of the volume of the octahedron to the volume of the cube is $ \textbf{(A)}\ \frac{\sqrt{3}}{12} \qquad\textbf{(B)}\ \frac{\sqrt{6}}{16} \qquad\textbf{(C)}\ \frac{1}{6} \qquad\textbf{(D)}\ \frac{\sqrt{2}}{8} \qquad\textbf{(E)}\ \frac{1}{4} $

2017 Israel Oral Olympiad, 4

What is the shortest possible side length of a four-dimensional hypercube that contains a regular octahedron with side 1?

1985 IMO Longlists, 28

[i]a)[/i] Let $M$ be the set of the lengths of the edges of an octahedron whose sides are congruent quadrangles. Prove that $M$ has at most three elements. [i]b)[/i] Let an octahedron whose sides are congruent quadrangles be given. Prove that each of these quadrangles has two equal sides meeting at a common vertex.

2016 Israel Team Selection Test, 3

Prove that there exists an ellipsoid touching all edges of an octahedron if and only if the octahedron's diagonals intersect. (Here an octahedron is a polyhedron consisting of eight triangular faces, twelve edges, and six vertices such that four faces meat at each vertex. The diagonals of an octahedron are the lines connecting pairs of vertices not connected by an edge).

2005 AMC 12/AHSME, 25

Six ants simultaneously stand on the six vertices of a regular octahedron, with each ant at a different vertex. Simultaneously and independently, each ant moves from its vertex to one of the four adjacent vertices, each with equal probability. What is the probability that no two ants arrive at the same vertex? $ \textbf{(A)}\ \frac {5}{256} \qquad \textbf{(B)}\ \frac {21}{1024} \qquad \textbf{(C)}\ \frac {11}{512} \qquad \textbf{(D)}\ \frac {23}{1024} \qquad \textbf{(E)}\ \frac {3}{128}$

2013 Federal Competition For Advanced Students, Part 2, 6

Consider a regular octahedron $ABCDEF$ with lower vertex $E$, upper vertex $F$, middle cross-section $ABCD$, midpoint $M$ and circumscribed sphere $k$. Further, let $X$ be an arbitrary point inside the face $ABF$. Let the line $EX$ intersect $k$ in $E$ and $Z$, and the plane $ABCD$ in $Y$. Show that $\sphericalangle{EMZ}=\sphericalangle{EYF}$.

2012 Online Math Open Problems, 28

A fly is being chased by three spiders on the edges of a regular octahedron. The fly has a speed of $50$ meters per second, while each of the spiders has a speed of $r$ meters per second. The spiders choose their starting positions, and choose the fly's starting position, with the requirement that the fly must begin at a vertex. Each bug knows the position of each other bug at all times, and the goal of the spiders is for at least one of them to catch the fly. What is the maximum $c$ so that for any $r<c,$ the fly can always avoid being caught? [i]Author: Anderson Wang[/i]

1990 IMO Longlists, 61

Prove that we can fill in the three dimensional space with regular tetrahedrons and regular octahedrons, all of which have the same edge-lengths. Also find the ratio of the number of the regular tetrahedrons used and the number of the regular octahedrons used.

2006 AMC 10, 24

Centers of adjacent faces of a unit cube are joined to form a regular octahedron. What is the volume of this octahedron? $ \textbf{(A) } \frac 18 \qquad \textbf{(B) } \frac 16 \qquad \textbf{(C) } \frac 14 \qquad \textbf{(D) } \frac 13 \qquad \textbf{(E) } \frac 12$

2010 Sharygin Geometry Olympiad, 25

For two different regular icosahedrons it is known that some six of their vertices are vertices of a regular octahedron. Find the ratio of the edges of these icosahedrons.

1984 Polish MO Finals, 3

Let $W$ be a regular octahedron and $O$ be its center. In a plane $P$ containing $O$ circles $k_1(O,r_1)$ and $k_2(O,r_2)$ are chosen so that $k_1 \subset P\cap W \subset k_2$. Prove that $\frac{r_1}{r_2}\le \frac{\sqrt3}{2}$

2009 Sharygin Geometry Olympiad, 8

Can the regular octahedron be inscribed into regular dodecahedron in such way that all vertices of octahedron be the vertices of dodecahedron? (B.Frenkin)

1997 Dutch Mathematical Olympiad, 4

We look at an octahedron, a regular octahedron, having painted one of the side surfaces red and the other seven surfaces blue. We throw the octahedron like a die. The surface that comes up is painted: if it is red it is painted blue and if it is blue it is painted red. Then we throw the octahedron again and paint it again according to the above rule. In total we throw the octahedron $10$ times. How many different octahedra can we get after finishing the $10$th time? [i]Two octahedra are different if they cannot be converted into each other by rotation.[/i]

2023 AMC 8, 17

A [i]regular octahedron[/i] has eight equilateral triangle faces with four faces meeting at each vertex. Jun will make the regular octahedron shown on the right by folding the piece of paper shown on the left. Which numbered face will end up to the right of $Q$? [asy] // Note: This diagram was not made by me. import graph; // The Solid // To save processing time, do not use three (dimensions) // Project (roughly) to two size(15cm); pair Fr, Lf, Rt, Tp, Bt, Bk; Lf=(0,0); Rt=(12,1); Fr=(7,-1); Bk=(5,2); Tp=(6,6.7); Bt=(6,-5.2); draw(Lf--Fr--Rt); draw(Lf--Tp--Rt); draw(Lf--Bt--Rt); draw(Tp--Fr--Bt); draw(Lf--Bk--Rt,dashed); draw(Tp--Bk--Bt,dashed); label(rotate(-8.13010235)*slant(0.1)*"$Q$", (4.2,1.6)); label(rotate(21.8014095)*slant(-0.2)*"$?$", (8.5,2.05)); pair g = (-8,0); // Define Gap transform real a = 8; draw(g+(-a/2,1)--g+(a/2,1), Arrow()); // Make arrow // Time for the NET pair DA,DB,DC,CD,O; DA = (6.92820323028,0); DB = (3.46410161514,6); DC = (DA+DB)/3; CD = conj(DC); O=(0,0); transform trf=shift(3g+(0,3)); path NET = O--(-2*DA)--(-2DB)--(-DB)--(2DA-DB)--DB--O--DA--(DA-DB)--O--(-DB)--(-DA)--(-DA-DB)--(-DB); draw(trf*NET); label("$7$",trf*DC); label("$Q$",trf*DC+DA-DB); label("$5$",trf*DC-DB); label("$3$",trf*DC-DA-DB); label("$6$",trf*CD); label("$4$",trf*CD-DA); label("$2$",trf*CD-DA-DB); label("$1$",trf*CD-2DA); [/asy] $\textbf{(A)}~1\qquad\textbf{(B)}~2\qquad\textbf{(C)}~3\qquad\textbf{(D)}~4\qquad\textbf{(E)}~5\qquad$