This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2010 Contests, 1

Some of $n$ towns are connected by two-way airlines. There are $m$ airlines in total. For $i = 1, 2, \cdots, n$, let $d_i$ be the number of airlines going from town $i$. If $1\le d_i \le 2010$ for each $i = 1, 2,\cdots, 2010$, prove that \[\displaystyle\sum_{i=1}^n d_i^2\le 4022m- 2010n\] Find all $n$ for which equality can be attained. [i]Proposed by Aleksandar Ilic[/i]

2022 Indonesia Regional, 3

It is known that $x$ and $y$ are reals satisfying \[ 5x^2 + 4xy + 11y^2 = 3. \] Without using calculus (differentials/integrals), determine the maximum value of $xy - 2x + 5y$.

1990 IMO Longlists, 24

Find the real number $t$, such that the following system of equations has a unique real solution $(x, y, z, v)$: \[ \left\{\begin{array}{cc}x+y+z+v=0\\ (xy + yz +zv)+t(xz+xv+yv)=0\end{array}\right. \]

2023 Romania Team Selection Test, P5

Let $ABCDEF$ be a convex hexagon. The diagonals $AC$ and $BD$ cross at $P,$ the diagonals $AE{}$ and $DF$ cross at $Q,$ and the line $PQ$ crosses the sides $BC$ and $EF$ at $X$ and $Y,{}$ respectively. Prove that the length of the segment $XY$ does not exceed the sum of the lengths of one of the diagonals through $P{}$ and one of the diagonals through $Q{}$. [i]The Problem Selection Committee[/i]

1998 Flanders Math Olympiad, 1

Prove there exist positive integers a,b,c for which $a+b+c=1998$, the gcd is maximized, and $0<a<b\leq c<2a$. Find those numbers. Are they unique?

VI Soros Olympiad 1999 - 2000 (Russia), 10.9

Prove that for any $\lambda > 3$ there is a number $x$ for which $$\sin x + \sin (\lambda x) \ge 1.8.$$

2023 China Northern MO, 5

Given a finite graph $G$, let $f(G)$ be the number of triangles in graph $G$, $g(G)$ be the number of edges in graph $G$, find the minimum constant $c$, so that for each graph $G$, there is $f^ 2(G)\le c \cdot g^3(G)$.

1969 Poland - Second Round, 4

Prove that for any natural numbers min the inequality holds $$1^m + 2^m + \ldots + n^m \geq n\cdot \left( \frac{n+1}{2}\right)^m$$

2013 Serbia National Math Olympiad, 6

Tags: inequalities
Find the largest constant $K\in \mathbb{R}$ with the following property: if $a_1,a_2,a_3,a_4>0$ are numbers satisfying $a_i^2 + a_j^2 + a_k^2 \geq 2 (a_ia_j + a_ja_k + a_ka_i)$, for every $1\leq i<j<k\leq 4$, then \[a_1^2+a_2^2+a_3^2+a_4^2 \geq K (a_1a_2+a_1a_3+a_1a_4+a_2a_3+a_2a_4+a_3a_4).\]

1949-56 Chisinau City MO, 28

Prove the inequality $2\sqrt{(p-b)(p-c)}\le a$, where $a, b, c$ are the lengths of the sides, and $p$ is the semiperimeter of some triangle..

2001 Baltic Way, 15

Let $a_0,a_1,a_2,\ldots $ be a sequence of positive real numbers satisfying $i\cdot a_2\ge (i + 1)\cdot a_{i_1}a_{i+1}$ for $i=1, 2, \ldots $ Furthermore, let $x$ and $y$ be positive reals, and let $b_i=xa_i+ya_{i-1}$ for $i=1, 2, \ldots $ Prove that the inequality $i\cdot b_2\ge (i + 1)\cdot b_{i-1}b_{i+1}$ holds for all integers $i\ge 2$.

2011 Moldova Team Selection Test, 2

Let $x_1, x_2, \ldots, x_n$ be real positive numbers such that $x_1\cdot x_2\cdots x_n=1$. Prove the inequality $\frac1{x_1(x_1+1)}+\frac1{x_2(x_2+1)}+\cdots+\frac1{x_n(x_n+1)}\geq\frac n2$

2022 Philippine MO, 7

Let $a, b,$ and $c$ be positive real numbers such that $ab + bc + ca = 3$. Show that \[ \dfrac{bc}{1 + a^4} + \dfrac{ca}{1 + b^4} + \dfrac{ab}{1 + c^4} \geq \dfrac{3}{2}. \]

2023 Korea Junior Math Olympiad, 6

Tags: inequalities
Find the maximum value of real number $A$ such that $$3x^2 + y^2 + 1 \geq A(x^2 + xy + x)$$ for all positive integers $x, y.$

2007 Alexandru Myller, 2

$ n $ lines meet at a point. Each one of the $ 2n $ disjoint angles formed around this point by these lines has either $ 7^{\circ} $ or $ 17^{\circ} . $ [b]a)[/b] Find $ n. $ [b]b)[/b] Prove that among these lines there are at least two perpendicular ones.

2016 Philippine MO, 3

Let \(n\) be any positive integer. Prove that \[\sum^n_{i=1} \frac{1}{(i^2+i)^{3/4}} > 2-\frac{2}{\sqrt{n+1}}\].

2001 Federal Math Competition of S&M, Problem 4

Let $S$ be the set of all $n$-tuples of real numbers, with the property that among the numbers $x_1,\frac{x_1+x_2}2,\ldots,\frac{x_1+x_2+\ldots+x_n}n$ the least is equal to $0$, and the greatest is equal to $1$. Determine $$\max_{(x_1,x_2,\ldots,x_n)\in S}\max_{1\le i,j\le n}(x_i-x_j)\qquad\text{and}\min_{(x_1,x_2,\ldots,x_n)\in S}\max_{1\le i,j\le n}(x_i-x_j).$$

2015 Greece Team Selection Test, 4

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfy $yf(x)+f(y) \geq f(xy)$

2024 Moldova EGMO TST, 5

$AD$ Is the angle bisector Of $\angle BAC$ Where $D$ lies on the The circumcircle of $\triangle ABC$. Show that $2AD>AB+AC$

2005 Germany Team Selection Test, 1

Find the smallest positive integer $n$ with the following property: For any integer $m$ with $0 < m < 2004$, there exists an integer $k$ such that \[\frac{m}{2004}<\frac{k}{n}<\frac{m+1}{2005}.\]

1985 IMO Longlists, 53

For each $P$ inside the triangle $ABC$, let $A(P), B(P)$, and $C(P)$ be the points of intersection of the lines $AP, BP$, and $CP$ with the sides opposite to $A, B$, and $C$, respectively. Determine $P$ in such a way that the area of the triangle $A(P)B(P)C(P)$ is as large as possible.

2000 Kazakhstan National Olympiad, 6

For positive numbers $ a $, $ b $ and $ c $ satisfying the equality $ a + b + c = 1 $, prove the inequality $$ \frac {a ^ 7 + b ^ 7} {a ^ 5 + b ^ 5} + \frac {b ^ 7 + c ^ 7} {b ^ 5 + c ^ 5} + \frac {c ^ 7 + a ^ 7} {c ^ 5 + a ^ 5} \geq \frac {1} {3}. $$

1967 IMO Longlists, 37

Prove that for arbitrary positive numbers the following inequality holds \[\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leq \frac{a^8 + b^8 + c^8}{a^3b^3c^3}.\]

2011 IMO Shortlist, 7

On a square table of $2011$ by $2011$ cells we place a finite number of napkins that each cover a square of $52$ by $52$ cells. In each cell we write the number of napkins covering it, and we record the maximal number $k$ of cells that all contain the same nonzero number. Considering all possible napkin configurations, what is the largest value of $k$? [i]Proposed by Ilya Bogdanov and Rustem Zhenodarov, Russia[/i]

2011 Kosovo National Mathematical Olympiad, 4

Let $ a$, $ b$, $ c$ be the sides of a triangle, and $ S$ its area. Prove: \[ a^{2} \plus{} b^{2} \plus{} c^{2}\geq 4S \sqrt {3} \] In what case does equality hold?