Found problems: 6530
1981 All Soviet Union Mathematical Olympiad, 311
It is known about real $a$ and $b$ that the inequality $$a \cos x + b \cos (3x) > 1$$ has no real solutions. Prove that $|b|\le 1$.
2009 Iran Team Selection Test, 2
Let $ a$ be a fix natural number . Prove that the set of prime divisors of $ 2^{2^{n}} \plus{} a$ for $ n \equal{} 1,2,\cdots$ is infinite
2005 SNSB Admission, 1
[b]a)[/b] Let be three vectorial spaces $ E,F,G, $ where $ F $ has finite dimension, and $ E $ is a subspace of $ F. $ Prove that if the function $ T:F\longrightarrow G $ is linear, then
$$ \dim TF -\dim TE\le \dim F-\dim E. $$
[b]b)[/b] Let $ A,B,C $ be matrices of real numbers. Prove that
$$ \text{rang} (AB) +\text{rang} (BC) \le \text{rang} (ABC) +\text{rang} (B) . $$
2018 Caucasus Mathematical Olympiad, 6
Given a convex quadrilateral $ABCD$ with $\angle BCD=90^\circ$. Let $E$ be the midpoint of $AB$. Prove that $2EC \leqslant AD+BD$.
2004 South East Mathematical Olympiad, 3
(1) Determine if there exists an infinite sequence $\{a_n\}$ with positive integer terms, such that $a^2_{n+1}\ge 2a_na_{n+2}$ for any positive integer $n$.
(2) Determine if there exists an infinite sequence $\{a_n\}$ with positive irrational terms, such that $a^2_{n+1}\ge 2a_na_{n+2}$ for any positive integer $n$.
1960 Putnam, B7
Let $g(t)$ and $h(t)$ be real, continuous functions for $t\geq 0.$ Show that any function $v(t)$ satisfying the differential inequality
$$\frac{dv}{dt}+g(t)v \geq h(t),\;\; v(t)=c,$$
satisfies the further inequality $v(t)\geq u(t),$ where
$$\frac{du}{dt}+g(t)u = h(t),\;\; u(t)=c.$$
From this, conclude that for sufficiently small $t>0,$ the solution of
$$\frac{dv}{dt}+g(t)v = v^2 ,\;\; v(t)=c$$
may be written
$$v=\max_{w(t)} \left( c e^{- \int_{0}^{t} |g(s)-2w(s)| \, ds} -\int_{0}^{t} e^{-\int_{0}^{t} |g(s')-2w(s')| \, ds'} w(s)^{2} ds \right),$$
where the maximum is over all continuous functions $w(t)$ defined over some $t$-interval $[0,t_0 ].$
2006 Croatia Team Selection Test, 2
Assume that $a, b,$ and $c$ are positive real numbers for which $(a+b)(a+c)(b+c) = 1$. Prove that $ab+bc+ca \leq\frac{3 }{4}.$
2006 Italy TST, 2
Let $ABC$ be a triangle, let $H$ be the orthocentre and $L,M,N$ the midpoints of the sides $AB, BC, CA$ respectively. Prove that
\[HL^{2} + HM^{2} + HN^{2} < AL^{2} + BM^{2} + CN^{2}\]
if and only if $ABC$ is acute-angled.
2007 Argentina National Olympiad, 3
Let $ ABCD$ be a parellogram with $ AB>AD$. Suposse the ratio between diagonals $ AC$ and $ BD$ is $ \frac {AC} {BD}\equal{}3$. Let $ r$ be the line symmetric to $ AD$ with respect to $ AC$ and $ s$ the line symmetric to $ BC$ with respect to $ BD$. If $ r$ and $ s$ intersect at $ P$ , find the ratio $ \frac {PA} {PB}$
Daniel
2021 Canada National Olympiad, 2
Let $n\geq 2$ be some fixed positive integer and suppose that $a_1, a_2,\dots,a_n$ are positive real numbers satisfying $a_1+a_2+\cdots+a_n=2^n-1$.
Find the minimum possible value of $$\frac{a_1}{1}+\frac{a_2}{1+a_1}+\frac{a_3}{1+a_1+a_2}+\cdots+\frac{a_n}{1+a_1+a_2+\cdots+a_{n-1}}$$
2010 Germany Team Selection Test, 3
Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\]
[i]Proposed by Igor Voronovich, Belarus[/i]
2023 JBMO TST - Turkey, 1
Prove that for all $a,b,c$ positive real numbers
$\dfrac{a^4+1}{b^3+b^2+b}+\dfrac{b^4+1}{c^3+c^2+c}+\dfrac{c^4+1}{a^3+a^2+a} \ge 2$
2014 Uzbekistan National Olympiad, 3
For all $x,y,z\in \mathbb{R}\backslash \{1\}$, such that $xyz=1$, prove that \[ \frac{x^2}{(x-1)^2}+\frac{y^2}{(y-1)^2}+\frac{z^2}{(z-1)^2}\ge 1 \]
1991 Dutch Mathematical Olympiad, 1
Prove that for any three positive real numbers $ a,b,c, \frac{1}{a\plus{}b}\plus{}\frac{1}{b\plus{}c}\plus{}\frac{1}{c\plus{}a} \ge \frac{9}{2} \cdot \frac{1}{a\plus{}b\plus{}c}$.
2003 China Team Selection Test, 3
The $ n$ roots of a complex coefficient polynomial $ f(z) \equal{} z^n \plus{} a_1z^{n \minus{} 1} \plus{} \cdots \plus{} a_{n \minus{} 1}z \plus{} a_n$ are $ z_1, z_2, \cdots, z_n$. If $ \sum_{k \equal{} 1}^n |a_k|^2 \leq 1$, then prove that $ \sum_{k \equal{} 1}^n |z_k|^2 \leq n$.
Mathley 2014-15, 4
Let $S_k$ be the set of all triplets of real numbers $(a, b, c)$ satisfying $a <k (b + c)$, $b <k (c + a)$, and $c <k (a + b)$. For what value of $k$ then $S_k$ is a subset of $\{(a, b, c) | ab + bc + ca> 0\}$ ?
Michel Bataille, France
2022 Pan-African, 3
Let $n$ be a positive integer, and $a_1, a_2, \dots, a_{2n}$ be a sequence of positive real numbers whose product is equal to $2$. For $k = 1, 2, \dots, 2n$, set $a_{2n + k} = a_k$, and define
$$
A_k = \frac{1 + a_k + a_k a_{k + 1} + \dots + a_k a_{k + 1} \cdots a_{k + n - 2}}{1 + a_k + a_k a_{k + 1} + \dots + a_k a_{k + 1} \cdots a_{k + 2n - 2}}.
$$
Suppose that $A_1, A_2, \dots, A_{2n}$ are pairwise distinct; show that exactly half of them are less than $\sqrt{2} - 1$.
2009 Indonesia TST, 2
Let $ x_1,x_2,\ldots,x_n$ be real numbers greater than 1. Show that \[ \frac{x_1x_2}{x_3}\plus{}\frac{x_2x_3}{x_4}\plus{}\cdots\plus{}\frac{x_nx_1}{x_2}\ge4n\] and determine when the equality holds.
2018 Bulgaria JBMO TST, 4
The real numbers $a_1 \leq a_2 \leq \cdots \leq a_{672}$ are given such that
$$a_1 + a_2 + \cdots + a_{672} = 2018.$$
For any $n \leq 672$, there are $n$ of these numbers with an integer sum. What is the smallest possible value of $a_{672}$?
2010 Today's Calculation Of Integral, 529
Prove that the following inequality holds for each natural number $ n$.
\[ \int_0^{\frac {\pi}{2}} \sum_{k \equal{} 1}^n \left(\frac {\sin kx}{k}\right)^2dx < \frac {61}{144}\pi\]
1978 Czech and Slovak Olympiad III A, 2
Determine (at least one) pair of real numbers $k,q$ such that the inequality
\[2\left|\sqrt{1-x^2}-kx-q\right|\le\sqrt2-1\]
holds for all $x\in[0,1].$
1990 Greece National Olympiad, 3
Find all functions $f: \mathbb{R}\to\mathbb{R}$ that satisfy $y^2f(x)(f(x)-2x)\le (1-xy)(1+xy) $ for any $x,y \in\mathbb{R}$.
2003 Gheorghe Vranceanu, 4
Let $ I $ be the incentre of $ ABC $ and $ D,E,F $ be the feet of the perpendiculars from $ I $ to $ BC,CA,AB, $ respectively. Show that
$$ \frac{AB}{DE} +\frac{BC}{EF} +\frac{CA}{FD}\ge 6. $$
2005 Junior Balkan Team Selection Tests - Moldova, 8
The families of second degree functions $f_m, g_m: R\to R, $ are considered , $f_m (x) = (m^2 + 1) x^2 + 3mx + m^2 - 1$, $g_m (x) = m^2x^2 + mx - 1$, where $m$ is a real nonzero parameter.
Show that, for any function $h$ of the second degree with the property that $g_m (x) \le h (x) \le f_m (x)$ for any real $x$, there exists $\lambda \in [0, 1]$ which verifies the condition $h (x) = \lambda f_m (x) + (1- \lambda) g_m (x)$, whatever real $x$ is.
2001 USAMO, 3
Let $a, b, c \geq 0$ and satisfy \[ a^2+b^2+c^2 +abc = 4 . \] Show that \[ 0 \le ab + bc + ca - abc \leq 2. \]