This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2024 Azerbaijan BMO TST, 5

Tags: inequalities
Let $a_1,a_2,\dots,a_{2023}$ be positive integers such that [list=disc] [*] $a_1,a_2,\dots,a_{2023}$ is a permutation of $1,2,\dots,2023$, and [*] $|a_1-a_2|,|a_2-a_3|,\dots,|a_{2022}-a_{2023}|$ is a permutation of $1,2,\dots,2022$. [/list] Prove that $\max(a_1,a_{2023})\ge 507$.

1985 Tournament Of Towns, (085) 1

$a, b$ and $c$ are sides of a triangle, and $\gamma$ is its angle opposite $c$. Prove that $c \ge (a + b) \sin \frac{\gamma}{2}$ (V. Prasolov )

2012 Mathcenter Contest + Longlist, 5

Let $a,b,c>0$ and $a+b+c+abc=4$. Prove that $$\frac{a}{\sqrt{b+c}}+\frac{b}{\sqrt{c+a}}+\frac{c}{\sqrt{a+b} }\ge \frac{1}{\sqrt{2}}(a+b+c).$$ [i](Zhuge Liang)[/i]

1999 Singapore MO Open, 3

For each positive integer $n$, let $f(n)$ be a positive integer. Show that if $f(n + 1) > f(f(n))$ for every positive integer n, then $f(x) = x$ for all positive integers $x$.

2014 Israel National Olympiad, 6

Let $n$ be a positive integer. Find the maximal real number $k$, such that the following holds: For any $n$ real numbers $x_1,x_2,...,x_n$, we have $\sqrt{x_1^2+x_2^2+\dots+x_n^2}\geq k\cdot\min(|x_1-x_2|,|x_2-x_3|,...,|x_{n-1}-x_n|,|x_n-x_1|)$

2010 Today's Calculation Of Integral, 591

Let $ a,\ b,\ c$ be real numbers such that $ a\geq b\geq c\geq 1$. Prove the following inequality: \[ \int_0^1 \{(1\minus{}ax)^3\plus{}(1\minus{}bx)^3\plus{}(1\minus{}cx)^3\minus{}3x\}\ dx\geq ab\plus{}bc\plus{}ca\minus{}\frac 32(a\plus{}b\plus{}c)\minus{}\frac 34abc.\]

2014 Thailand TSTST, 3

Tags: inequalities
For all pairwise distinct positive real numbers $a, b, c$ such that $abc = 1$, prove that $$\frac{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1}{(a+b+c+1)^2}+\frac{3}{8}\sqrt[3]{\frac{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}{(a-b)^3+(b-c)^3+(c-a)^3}}\geq 1.$$

2003 Moldova Team Selection Test, 2

Consider the triangle $ ABC$ with side-lenghts equal to $ a,b,c$. Let $ p\equal{}\frac{a\plus{}b\plus{}c}{2}$, $ R$-the radius of circumcircle of the triangle $ ABC$, $ r$-the radius of the incircle of the triangle $ ABC$ and let $ l_a,l_b,l_c$ be the lenghts of bisectors drawn from $ A,B$ and $ C$, respectively, in the triangle $ ABC$. Prove that: $ l_al_b\plus{}l_bl_c\plus{}l_cl_a\leq p\sqrt{3r^2\plus{}12Rr}$ [i]Proposer[/i]: [b]Baltag Valeriu[/b]

2005 Tuymaada Olympiad, 4

In a triangle $ABC$, let $A_{1}$, $B_{1}$, $C_{1}$ be the points where the excircles touch the sides $BC$, $CA$ and $AB$ respectively. Prove that $A A_{1}$, $B B_{1}$ and $C C_{1}$ are the sidelenghts of a triangle. [i]Proposed by L. Emelyanov[/i]

2001 IMO Shortlist, 3

Let $x_1,x_2,\ldots,x_n$ be arbitrary real numbers. Prove the inequality \[ \frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots + \frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}. \]

MathLinks Contest 3rd, 2

Prove that for all positive reals $a, b, c$ the following double inequality holds: $$\frac{a+b+c}{3}\ge \sqrt[3]{\frac{(a+b)(b+c)(c+a)}{8}}\ge \frac{\sqrt{ab}+\sqrt{bc}\sqrt{ca}}{3}$$

2018 District Olympiad, 3

Let $a, b, c$ be strictly positive real numbers such that $1 < b \le c^2 \le a^{10}$, and \[\log_ab + 2\log_bc + 5\log_ca = 12.\] Prove that \[2\log_ac + 5\log_cb + 10\log_ba \ge 21.\]

1997 Federal Competition For Advanced Students, Part 2, 1

Tags: inequalities
Determine all quadruples $(a, b, c, d)$ of real numbers satisfying the equation \[256a^3b^3c^3d^3 = (a^6+b^2+c^2+d^2)(a^2+b^6+c^2+d^2)(a^2+b^2+c^6+d^2)(a^2+b^2+c^2+d^6).\]

2003 Estonia Team Selection Test, 5

Let $a, b, c$ be positive real numbers satisfying the condition $\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1$ . Prove the inequality $$\frac{a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}} \le \frac{3\sqrt3}{2}$$ When does the equality hold? (L. Parts)

1995 Brazil National Olympiad, 3

For any positive integer $ n>1$, let $ P\left(n\right)$ denote the largest prime divisor of $ n$. Prove that there exist infinitely many positive integers $ n$ for which \[ P\left(n\right)<P\left(n\plus{}1\right)<P\left(n\plus{}2\right).\]

2012 Junior Balkan Team Selection Tests - Romania, 1

Let $a_1, a_2, ..., a_n$ be real numbers such that $a_1 = a_n = a$ and $a_{k+1} \le \frac{a_k + a_{k+2}}{2} $, for all $k = 1, 2, ..., n - 2$. Prove that $a_k \le a,$ for all $k = 1, 2, ..., n.$

2015 India Regional MathematicaI Olympiad, 8

The length of each side of a convex quadrilateral $ABCD$ is a positive integer. If the sum of the lengths of any three sides is divisible by the length of the remaining side then prove that some two sides of the quadrilateral have the same length.

2022 Israel TST, 2

Tags: inequalities
The numbers $a$, $b$, and $c$ are real. Prove that $$(a^5+b^5+c^5+a^3c^2+b^3a^2+c^3b^2)^2\geq 4(a^2+b^2+c^2)(a^5b^3+b^5c^3+c^5a^3)$$

1983 All Soviet Union Mathematical Olympiad, 354

Natural number $k$ has $n$ digits in its decimal notation. It was rounded up to tens, then the obtained number was rounded up to hundreds, and so on $(n-1)$ times. Prove that the obtained number $m$ satisfies inequality $m < \frac{18k}{13}$. (Examples of rounding: $191\to190\to 200, 135\to140\to 100$.)

1996 Vietnam Team Selection Test, 3

Tags: inequalities
Find the minimum value of the expression: \[f(a,b,c)= (a+b)^4+(b+c)^4+(c+a)^4 - \frac{4}{7} \cdot (a^4+b^4+c^4).\]

2011 Uzbekistan National Olympiad, 1

Tags: inequalities
Let a,b,c Postive real numbers such that $a+b+c\geq 6$. Find the minimum value $A=\sum_{cyc}{a^2}$+$\sum_{cyc}{\frac{a}{b^2+c+1}}$

1996 Balkan MO, 1

Let $O$ be the circumcenter and $G$ be the centroid of a triangle $ABC$. If $R$ and $r$ are the circumcenter and incenter of the triangle, respectively, prove that \[ OG \leq \sqrt{ R ( R - 2r ) } . \] [i]Greece[/i]

2010 Tuymaada Olympiad, 2

In acute triangle $ABC$, let $H$ denote its orthocenter and let $D$ be a point on side $BC$. Let $P$ be the point so that $ADPH$ is a parallelogram. Prove that $\angle DCP<\angle BHP$.

2013 Uzbekistan National Olympiad, 2

Let $x$ and $y$ are real numbers such that $x^2y^2+2yx^2+1=0.$ If $S=\frac{2}{x^2}+1+\frac{1}{x}+y(y+2+\frac{1}{x})$, find (a)max$S$ and (b) min$S$.

1990 IMO Longlists, 42

Find $n$ points $p_1, p_2, \ldots, p_n$ on the circumference of a unit circle, such that $\sum_{1\leq i< j \leq n} p_i p_j$ is maximal.