This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2004 Polish MO Finals, 3

On a tournament with $ n \ge 3$ participants, every two participants played exactly one match and there were no draws. A three-element set of participants is called a [i]draw-triple[/i] if they can be enumerated so that the first defeated the second, the second defeated the third, and the third defeated the first. Determine the largest possible number of draw-triples on such a tournament.

2020 Macedonia Additional BMO TST, 1

Let $a_1,a_2,...,a_{2020}$ be positive real numbers. Prove that: $$\max{(a^2_1-a_2,a^2_2-a_3,...,a^2_{2020}-a_1)}\ge\max{(a^2_1-a_1,a^2_2-a_2,...,a^2_{2020}-a_{2020})}$$

2012 Stars of Mathematics, 3

For all triplets $a,b,c$ of (pairwise) distinct real numbers, prove the inequality $$ \left | \dfrac {a} {b-c} \right | + \left | \dfrac {b} {c-a} \right | + \left | \dfrac {c} {a-b} \right | \geq 2$$ and determine all cases of equality. Prove that if we also impose $a,b,c$ positive, then all equality cases disappear, but the value $2$ remains the best constant possible. ([i]Dan Schwarz[/i])

2014 Moldova Team Selection Test, 2

Tags: inequalities
Let $a,b\in\mathbb{R}_+$ such that $a+b=1$. Find the minimum value of the following expression: \[E(a,b)=3\sqrt{1+2a^2}+2\sqrt{40+9b^2}.\]

2021 Taiwan TST Round 1, A

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2009 Switzerland - Final Round, 3

Let $a, b, c, d$ be positive real numbers. Prove the following inequality and determine all cases in which the equality holds : $$\frac{a - b}{b + c}+\frac{b - c}{c + d}+\frac{c - d}{d + a}+\frac{d - a}{a + b} \ge 0.$$

2012 China Team Selection Test, 1

Complex numbers ${x_i},{y_i}$ satisfy $\left| {{x_i}} \right| = \left| {{y_i}} \right| = 1$ for $i=1,2,\ldots ,n$. Let $x=\frac{1}{n}\sum\limits_{i=1}^n{{x_i}}$, $y=\frac{1}{n}\sum\limits_{i=1}^n{{y_i}}$ and $z_i=x{y_i}+y{x_i}-{x_i}{y_i}$. Prove that $\sum\limits_{i=1}^n{\left| {{z_i}}\right|}\leqslant n$.

2019 All-Russian Olympiad, 8

For $a,b,c$ be real numbers greater than $1$, prove that \[\frac{a+b+c}{4} \geq \frac{\sqrt{ab-1}}{b+c}+\frac{\sqrt{bc-1}}{c+a}+\frac{\sqrt{ca-1}}{a+b}.\]

2024 Indonesia Regional, 1

Given a real number $C\leqslant 2$. Prove that for every positive real number $x,y$ with $xy=1$, the following inequality holds: \[ \sqrt{\frac{x^2+y^2}{2}} + \frac{C}{x+y} \geqslant 1 + \frac{C}{2}.\] [i]Proposed by Fajar Yuliawan, Indonesia[/i]

2006 Abels Math Contest (Norwegian MO), 2

a) Let $a$ and $b$ be two non-negative real numbers. Show that $a+b \ge \sqrt{\frac{a^2+b^2}{2}}+ \sqrt{ab}$ b) Let $a$ and $b$ be two real numbers in $[0, 3]$. Show that $\sqrt{\frac{a^2+b^2}{2}}+ \sqrt{ab} \ge \frac{(a+b)^2}{2}$

2021 China Team Selection Test, 1

Tags: inequalities
Given positive integers $m$ and $n$. Let $a_{i,j} ( 1 \le i \le m, 1 \le j \le n)$ be non-negative real numbers, such that $$ a_{i,1} \ge a_{i,2} \ge \cdots \ge a_{i,n} \text{ and } a_{1,j} \ge a_{2,j} \ge \cdots \ge a_{m,j} $$ holds for all $1 \le i \le m$ and $1 \le j \le n$. Denote $$ X_{i,j}=a_{1,j}+\cdots+a_{i-1,j}+a_{i,j}+a_{i,j-1}+\cdots+a_{i,1},$$ $$ Y_{i,j}=a_{m,j}+\cdots+a_{i+1,j}+a_{i,j}+a_{i,j+1}+\cdots+a_{i,n}.$$ Prove that $$ \prod_{i=1}^{m} \prod_{j=1}^{n} X_{i,j} \ge \prod_{i=1}^{m} \prod_{j=1}^{n} Y_{i,j}.$$

2002 All-Russian Olympiad, 3

Prove that if $0<x<\frac{\pi}{2}$ and $n>m$, where $n$,$m$ are natural numbers, \[ 2 \left| \sin^n x - \cos^n x \right| \le 3 \left| \sin^m x - \cos^m x \right|.\]

2005 Vietnam Team Selection Test, 2

Given $n$ chairs around a circle which are marked with numbers from 1 to $n$ .There are $k$, $k \leq 4 \cdot n$ students sitting on those chairs .Two students are called neighbours if there is no student sitting between them. Between two neighbours students ,there are at less 3 chairs. Find the number of choices of $k$ chairs so that $k$ students can sit on those and the condition is satisfied.

2019 Jozsef Wildt International Math Competition, W. 32

Let $u_k$, $v_k$, $a_k$ and $b_k$ be non-negative real sequences such as $u_k > a_k$ and $v_k > b_k$, where $k = 1, 2,\cdots , n$. If $0 < m_1 \leq u_k \leq M_1$ and $0 < m_2 \leq v_k \leq M_2$, then $$\sum \limits_{k=1}^n(lu_kv_k-a_kb_k)\geq \left(\sum \limits_{k=1}^n\left(u_k^2-a_k^2\right)\right)^\frac{1}{2}\left(\sum \limits_{k=1}^n\left(v_k^2-b_k^2\right)\right)^\frac{1}{2}$$where$$l=\frac{M_1M_2+m_1m_2}{2\sqrt{m_1M_1m_2M_2}}$$

2012 ELMO Shortlist, 8

Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$. [i]Victor Wang.[/i]

2010 Turkey Junior National Olympiad, 4

Prove that \[ a^2b^2(a^2+b^2-2) \geq (a+b)(ab-1) \] for all positive real numbers $a$ and $b.$

2012 China Team Selection Test, 1

Complex numbers ${x_i},{y_i}$ satisfy $\left| {{x_i}} \right| = \left| {{y_i}} \right| = 1$ for $i=1,2,\ldots ,n$. Let $x=\frac{1}{n}\sum\limits_{i=1}^n{{x_i}}$, $y=\frac{1}{n}\sum\limits_{i=1}^n{{y_i}}$ and $z_i=x{y_i}+y{x_i}-{x_i}{y_i}$. Prove that $\sum\limits_{i=1}^n{\left| {{z_i}}\right|}\leqslant n$.

1966 IMO Longlists, 38

Two concentric circles have radii $R$ and $r$ respectively. Determine the greatest possible number of circles that are tangent to both these circles and mutually nonintersecting. Prove that this number lies between $\frac 32 \cdot \frac{\sqrt R +\sqrt r }{\sqrt R -\sqrt r } -1$ and $\frac{63}{20} \cdot \frac{R+r}{R-r}.$

2018 China Girls Math Olympiad, 3

Given a real sequence $\left \{ x_n \right \}_{n=1}^{\infty}$ with $x_1^2 = 1$. Prove that for each integer $n \ge 2$, $$\sum_{i|n}\sum_{j|n}\frac{x_ix_j}{\textup{lcm} \left ( i,j \right )} \ge \prod_{\mbox{\tiny$\begin{array}{c} p \: \textup{is prime} \\ p|n \end{array}$} }\left ( 1-\frac{1}{p} \right ). $$

2011 ISI B.Math Entrance Exam, 4

Let $t_1 < t_2 < t_3 < \cdots < t_{99}$ be real numbers. Consider a function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x)=|x-t_1|+|x-t_2|+...+|x-t_{99}|$ . Show that $f(x)$ will attain minimum value at $x=t_{50}$.

2004 France Team Selection Test, 2

Let $P$, $Q$, and $R$ be the points where the incircle of a triangle $ABC$ touches the sides $AB$, $BC$, and $CA$, respectively. Prove the inequality $\frac{BC} {PQ} + \frac{CA} {QR} + \frac{AB} {RP} \geq 6$.

the 12th XMO, Problem 2

Let $a_1,a_2,\cdots,a_{22}\in [1,2],$ find the maximum value of $$\dfrac{\sum\limits_{i=1}^{22}a_ia_{i+1}}{\left( \sum\limits_{i=1}^{22}a_i\right) ^2}$$where $a_{23}=a_1.$

2002 Junior Balkan Team Selection Tests - Moldova, 9

The real numbers $a$ and $b$ satisfy the relation $a + b \ge 1$. Show that $8 (a^4 + b^4) \ge 1$.

2019 China Team Selection Test, 1

Given complex numbers $x,y,z$, with $|x|^2+|y|^2+|z|^2=1$. Prove that: $$|x^3+y^3+z^3-3xyz| \le 1$$

2007 Indonesia TST, 1

Tags: inequalities
Let $ a,b,c$ be real numbers. Prove that $ (ab\plus{}bc\plus{}ca\minus{}1)^2 \le (a^2\plus{}1)(b^2\plus{}1)(c^2\plus{}1)$.