This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2008 Ukraine Team Selection Test, 2

There is a row that consists of digits from $ 0$ to $ 9$ and Ukrainian letters (there are $ 33$ of them) with following properties: there aren’t two distinct digits or letters $ a_i$, $ a_j$ such that $ a_i > a_j$ and $ i < j$ (if $ a_i$, $ a_j$ are letters $ a_i > a_j$ means that $ a_i$ has greater then $ a_j$ position in alphabet) and there aren’t two equal consecutive symbols or two equal symbols having exactly one symbol between them. Find the greatest possible number of symbols in such row.

2013 Romania National Olympiad, 4

a)Prove that $\frac{1}{2}+\frac{1}{3}+...+\frac{1}{{{2}^{m}}}<m$, for any $m\in {{\mathbb{N}}^{*}}$. b)Let ${{p}_{1}},{{p}_{2}},...,{{p}_{n}}$ be the prime numbers less than ${{2}^{100}}$. Prove that $\frac{1}{{{p}_{1}}}+\frac{1}{{{p}_{2}}}+...+\frac{1}{{{p}_{n}}}<10$

2010 China Second Round Olympiad, 3

Tags: inequalities
let $n>2$ be a fixed integer.positive reals $a_i\le 1$(for all $1\le i\le n$).for all $k=1,2,...,n$,let $A_k=\frac{\sum_{i=1}^{k}a_i}{k}$ prove that $|\sum_{k=1}^{n}a_k-\sum_{k=1}^{n}A_k|<\frac{n-1}{2}$.

1999 Romania Team Selection Test, 4

Show that for all positive real numbers $x_1,x_2,\ldots,x_n$ with product 1, the following inequality holds \[ \frac 1{n-1+x_1 } +\frac 1{n-1+x_2} + \cdots + \frac 1{n-1+x_n} \leq 1. \]

2014 Singapore Senior Math Olympiad, 32

Determine the maximum value of $\frac{8(x+y)(x^3+y^3)}{(x^2+y^2)^2}$ for all $(x,y)\neq (0,0)$

1998 Vietnam National Olympiad, 2

Find minimum value of $F(x,y)=\sqrt{(x+1)^{2}+(y-1)^{2}}+\sqrt{(x-1)^{2}+(y+1)^{2}}+\sqrt{(x+2)^{2}+(y+2)^{2}}$, where $x,y\in\mathbb{R}$.

2005 China Team Selection Test, 1

Find all positive integers $m$ and $n$ such that the inequality: \[ [ (m+n) \alpha ] + [ (m+n) \beta ] \geq [ m \alpha ] + [n \beta] + [ n(\alpha+\beta)] \] is true for any real numbers $\alpha$ and $\beta$. Here $[x]$ denote the largest integer no larger than real number $x$.

2016 Korea Winter Program Practice Test, 2

Tags: inequalities
Let $a_i, b_i$ ($1 \le i \le n$, $n \ge 2$) be positive real numbers such that $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$. Prove that $\sum_{i=1}^n \frac{(a_{i+1}+b_{i+1})^2}{n(a_i-b_i)^2+4(n-1)\sum_{j=1}^n a_jb_j} \ge \frac{1}{n-1}$

2014 Contests, 2

Let $ k\geq 1 $ and let $ I_{1},\dots, I_{k} $ be non-degenerate subintervals of the interval $ [0, 1] $. Prove that \[ \sum \frac{1}{\left | I_{i}\cup I_{j} \right |} \geq k^{2} \] where the summation is over all pairs $ (i, j) $ of indices such that $I_i\cap I_j\neq \emptyset$.

2014 Taiwan TST Round 1, 2

A triangle has side lengths $a$, $b$, $c$, and the altitudes have lengths $h_a$, $h_b$, $h_c$. Prove that \[ \left( \frac{a}{h_a} \right)^2 + \left( \frac{b}{h_b} \right)^2 + \left( \frac{c}{h_c} \right)^2 \ge 4. \]

2009 USAMO, 2

Let $n$ be a positive integer. Determine the size of the largest subset of $\{ -n, -n+1, \dots, n-1, n\}$ which does not contain three elements $a$, $b$, $c$ (not necessarily distinct) satisfying $a+b+c=0$.

2024 China Western Mathematical Olympiad, 8

Given a positive integer $n \geq 2$. Let $a_{ij}$ $(1 \leq i,j \leq n)$ be $n^2$ non-negative reals and their sum is $1$. For $1\leq i \leq n$, define $R_i=max_{1\leq k \leq n}(a_{ik})$. For $1\leq j \leq n$, define $C_j=min_{1\leq k \leq n}(a_{kj})$ Find the maximum value of $C_1C_2 \cdots C_n(R_1+R_2+ \cdots +R_n)$

1992 Poland - First Round, 9

Tags: inequalities
Prove that for all real numbers $a,b,c$ the inequality $(a^2+b^2-c^2)(b^2+c^2-a^2)(c^2+a^2-b^2) \leq (a+b-c)^2(b+c-a)^2(c+a-b)^2$ holds.

2010 Nordic, 1

A function $f : \mathbb{Z}_+ \to \mathbb{Z}_+$, where $\mathbb{Z}_+$ is the set of positive integers, is non-decreasing and satisfies $f(mn) = f(m)f(n)$ for all relatively prime positive integers $m$ and $n$. Prove that $f(8)f(13) \ge (f(10))^2$.

2019 Polish Junior MO Finals, 4.

The point $D$ lies on the side $AB$ of the triangle $ABC$. Assume that there exists such a point $E$ on the side $CD$, that $$ \sphericalangle EAD = \sphericalangle AED \quad \text{and} \quad \sphericalangle ECB = \sphericalangle CEB. $$ Show that $AC + BC > AB + CE$.

PEN M Problems, 26

Let $p$ be an odd prime $p$ such that $2h \neq 1 \; \pmod{p}$ for all $h \in \mathbb{N}$ with $h< p-1$, and let $a$ be an even integer with $a \in] \tfrac{p}{2}, p [$. The sequence $\{a_n\}_{n \ge 0}$ is defined by $a_{0}=a$, $a_{n+1}=p -b_{n}$ \; $(n \ge 0)$, where $b_{n}$ is the greatest odd divisor of $a_n$. Show that the sequence $\{a_n\}_{n \ge 0}$ is periodic and find its minimal (positive) period.

2021 Flanders Math Olympiad, 4

(a) Prove that for every $x \in R$ holds that $$-1 \le \frac{x}{x^2 + x + 1} \le \frac 13$$ (b) Determine all functions $f : R \to R$ for which for every $x \in R$ holds that $$f \left( \frac{x}{x^2 + x + 1} \right) = \frac{x^2}{x^4 + x^2 + 1}$$

2014 Hanoi Open Mathematics Competitions, 6

Let $a,b,c$ be the length sides of a given triangle and $x,y,z$ be the sides length of bisectrices, respectively. Prove the following inequality $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

2005 All-Russian Olympiad, 1

We select $16$ cells on an $8\times 8$ chessboard. What is the minimal number of pairs of selected cells in the same row or column?

PEN O Problems, 43

Is it possible to find a set $A$ of eleven positive integers such that no six elements of $A$ have a sum which is divisible by $6$?

OMMC POTM, 2024 2

Let $a,b,c$, and $d$ be real numbers such that $$a+b = c +d+ 12$$ and $$ab + cd - 28 = bc + ad.$$ Find the minimum possible value of $a^4+b^4+c^4+d^4$.

1994 Poland - Second Round, 2

Let $a_1,...,a_n$ be positive real numbers such that $\sum_{i=1}^n a_i =\prod_{i=1}^n a_i $ , and let $b_1,...,b_n$ be positive real numbers such that $a_i \le b_i$ for all $i$. Prove that $\sum_{i=1}^n b_i \le\prod_{i=1}^n b_i $

2014 IMO Shortlist, A1

Let $a_0 < a_1 < a_2 < \dots$ be an infinite sequence of positive integers. Prove that there exists a unique integer $n\geq 1$ such that \[a_n < \frac{a_0+a_1+a_2+\cdots+a_n}{n} \leq a_{n+1}.\] [i]Proposed by Gerhard Wöginger, Austria.[/i]

2008 Thailand Mathematical Olympiad, 3

For each positive integer $n$, define $a_n = n(n + 1)$. Prove that $$n^{1/a_1} + n^{1/a_3} + n^{1/a_5} + ...+ n^{1/a_{2n-1}} \ge n^{a_{3n+2}/a_{3n+1}}$$ .

2019 BMT Spring, 10

Tags: inequalities
Find the number of ordered integer triplets $ x, y, z $ with absolute value less than or equal to 100 such that $ 2x^2 + 3y^2 + 3z^2 + 2xy + 2xz - 4yz < 5 $.