This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1993 All-Russian Olympiad, 1

The lengths of the sides of a triangle are prime numbers of centimeters. Prove that its area cannot be an integer number of square centimeters.

1953 Moscow Mathematical Olympiad, 238

Prove that if in the following fraction we have $n$ radicals in the numerator and $n - 1$ in the denominator, then $$\frac{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2+...+\sqrt{2}}}}>\frac14$$

2007 Italy TST, 3

Let $p \geq 5$ be a prime. (a) Show that exists a prime $q \neq p$ such that $q| (p-1)^{p}+1$ (b) Factoring in prime numbers $(p-1)^{p}+1 = \prod_{i=1}^{n}p_{i}^{a_{i}}$ show that: \[\sum_{i=1}^{n}p_{i}a_{i}\geq \frac{p^{2}}2 \]

2002 Greece Junior Math Olympiad, 4

Prove that $1\cdot2\cdot3\cdots 2002<\left(\frac{2003}{2}\right)^{2002}.$

1999 Kazakhstan National Olympiad, 8

Let $ {{a} _ {1}}, {{a} _ {2}}, \ldots, {{a} _ {n}} $ be permutation of numbers $ 1,2, \ldots, n $, where $ n \geq 2 $. Find the maximum value of the sum $$ S (n) = | {{a} _ {1}} - {{a} _ {2}} | + | {{a} _ {2}} - {{a} _ {3}} | + \cdots + | {{a} _ {n-1}} - {{a} _ {n}} |. $$

2015 South East Mathematical Olympiad, 2

Given a sequence $\{ a_n\}_{n\in \mathbb{Z}^+}$ defined by $a_1=1$ and $a_{2k}=a_{2k-1}+a_k,a_{2k+1}=a_{2k}$ for all positive integer $k$. Prove that, for any positive integer $n$, $a_{2^n}>2^{\frac{n^2}{4}}$.

2001 National High School Mathematics League, 2

Tags: inequalities
If $x_i\geq0(i=1,2,\cdots,n)$, and $$\sum_{i=1}^n x_i^2 + 2\sum_{1 \leq k < j \leq n} \sqrt{\frac{k}{j}}x_kx_j = 1.$$ Find the maximum and minumum value of $\sum_{i=1}^n x_i$.

2024 Balkan MO, 3

Let $a$ and $b$ be distinct positive integers such that $3^a + 2$ is divisible by $3^b + 2$. Prove that $a > b^2$. [i]Proposed by Tynyshbek Anuarbekov, Kazakhstan[/i]

2019 Junior Balkan MO, 2

Let $a$, $b$ be two distinct real numbers and let $c$ be a positive real numbers such that $a^4 - 2019a = b^4 - 2019b = c$. Prove that $- \sqrt{c} < ab < 0$.

2021 Kyiv City MO Round 1, 11.4

For positive real numbers $a, b, c$ with sum $\frac{3}{2}$, find the smallest possible value of the following expression: $$\frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} + \frac{1}{abc}$$ [i]Proposed by Serhii Torba[/i]

1998 Korea Junior Math Olympiad, 6

Tags: inequalities
For positive reals $a \geq b \geq c \geq 0$ prove the following inequality: $$\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq \frac{a+b}{a+c}+\frac{b+c}{b+a}+\frac{c+a}{c+b}$$

2011 Canadian Students Math Olympiad, 3

Tags: inequalities
Find the largest $C \in \mathbb{R}$ such that \[\frac{x+z}{(x-z)^2} +\frac{x+w}{(x-w)^2} +\frac{y+z}{(y-z)^2}+\frac{y+w}{(y-w)^2} + \sum_{cyc} \frac{1}{x} \ge \frac{C}{x+y+z+w}\] where $x,y,z,w \in \mathbb{R^+}$. [i]Author: Hunter Spink[/i]

2016 China Western Mathematical Olympiad, 8

For any given integers $m,n$ such that $2\leq m<n$ and $(m,n)=1$. Determine the smallest positive integer $k$ satisfying the following condition: for any $m$-element subset $I$ of $\{1,2,\cdots,n\}$ if $\sum_{i\in I}i> k$, then there exists a sequence of $n$ real numbers $a_1\leq a_2 \leq \cdots \leq a_n$ such that $$\frac1m\sum_{i\in I} a_i>\frac1n\sum_{i=1}^na_i$$

1994 Tuymaada Olympiad, 5

Find the smallest natural number $n$ for which $sin \Big(\frac{1}{n+1934}\Big)<\frac{1}{1994}$ .

2011 N.N. Mihăileanu Individual, 3

Tags: inequalities
Let a,b,c>0 with ab+bc+ca=1. Prove that: $\frac{b^3c}{a^2+b^2}+\frac{c^3a}{b^2+c^2}+\frac{a^3b}{c^2+a^2}\ge\frac{1}{2}.$

2003 Irish Math Olympiad, 1

If $a,b,c$ are the sides of a triangle whose perimeter is equal to 2 then prove that: a) $abc+\frac{28}{27}\geq ab+bc+ac$; b) $abc+1<ab+bc+ac$ See also [url]http://www.mathlinks.ro/Forum/viewtopic.php?t=47939&view=next[/url] (problem 1) :)

1992 Romania Team Selection Test, 9

Tags: inequalities
Let $x, y$ be real numbers such that $1\le x^2-xy+y^2\le2$. Show that: a) $\dfrac{2}{9}\le x^4+y^4\le 8$; b) $x^{2n}+y^{2n}\ge\dfrac{2}{3^n}$, for all $n\ge3$. [i]Laurențiu Panaitopol[/i] and [i]Ioan Tomescu[/i]

2021 Canadian Junior Mathematical Olympiad, 4

Let $n\geq 2$ be some fixed positive integer and suppose that $a_1, a_2,\dots,a_n$ are positive real numbers satisfying $a_1+a_2+\cdots+a_n=2^n-1$. Find the minimum possible value of $$\frac{a_1}{1}+\frac{a_2}{1+a_1}+\frac{a_3}{1+a_1+a_2}+\cdots+\frac{a_n}{1+a_1+a_2+\cdots+a_{n-1}}$$

2021 Israel TST, 3

Tags: inequalities
What is the smallest value of $k$ for which the inequality \begin{align*} ad-bc+yz&-xt+(a+c)(y+t)-(b+d)(x+z)\leq \\ &\leq k\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}+\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2 \end{align*} holds for any $8$ real numbers $a,b,c,d,x,y,z,t$? Edit: Fixed a mistake! Thanks @below.

2012 European Mathematical Cup, 3

Tags: inequalities
Prove that the following inequality holds for all positive real numbers $a$, $b$, $c$, $d$, $e$ and $f$ \[\sqrt[3]{\frac{abc}{a+b+d}}+\sqrt[3]{\frac{def}{c+e+f}} < \sqrt[3]{(a+b+d)(c+e+f)} \text{.}\] [i]Proposed by Dimitar Trenevski.[/i]

2010 Germany Team Selection Test, 3

Let $f$ be any function that maps the set of real numbers into the set of real numbers. Prove that there exist real numbers $x$ and $y$ such that \[f\left(x-f(y)\right)>yf(x)+x\] [i]Proposed by Igor Voronovich, Belarus[/i]

1966 IMO Shortlist, 5

Prove the inequality \[\tan \frac{\pi \sin x}{4\sin \alpha} + \tan \frac{\pi \cos x}{4\cos \alpha} >1\] for any $x, \alpha$ with $0 \leq x \leq \frac{\pi }{2}$ and $\frac{\pi}{6} < \alpha < \frac{\pi}{3}.$

2009 Irish Math Olympiad, 5

Tags: inequalities
Hello. Suppose $a$, $b$, $c$ are real numbers such that $a+b+c = 0$ and $a^{2}+b^{2}+c^{2} = 1$. Prove that $a^{2}b^{2}c^{2}\leq \frac{1}{54}$ and determine the cases of equality.

2004 District Olympiad, 2

The real numbers $a, b, c, d$ satisfy $a > b > c > d$ and $$a + b + c + d = 2004 \,\,\, and \,\,\, a^2 - b^2 + c^2 - d^2 = 2004.$$ Answer, with proof, to the following questions: a) What is the smallest possible value of $a$? b) What is the number of possible values of $a$?

1987 IMO Longlists, 44

Let $\theta_1,\theta_2,\cdots,\theta_n$ be $n$ real numbers such that $\sin \theta_1+\sin \theta_2+\cdots+\sin \theta_n=0$. Prove that \[|\sin \theta_1+2 \sin \theta_2+\cdots +n \sin \theta_n| \leq \left[ \frac{n^2}{4} \right]\]