This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2004 Uzbekistan National Olympiad, 3

Given a sequence {$a_n$} such that $a_1=2$ and for all positive integer $n\geq 2$ $a_{n+1}=\frac{a_n^4+9}{16a_n}$. Prove that $\frac {4}{5}<a_n<\frac {5}{4}$

2020 Korea Junior Math Olympiad, 5

Let $a, b, c, d, e$ be real numbers satisfying the following conditions. \[a \le b \le c \le d \le e, \quad a+e=1, \quad b+c+d=3, \quad a^2+b^2+c^2+d^2+e^2=14\]Determine the maximum possible value of $ae$.

1992 China National Olympiad, 2

Given nonnegative real numbers $x_1,x_2,\dots ,x_n$, let $a=min\{x_1, x_2,\dots ,x_n\}$. Prove that the following inequality holds: \[ \sum^{n}_{i=1}\dfrac{1+x_i}{1+x_{i+1}}\le n+\dfrac{1}{(1+a)^2}\sum^{n}_{i=1}(x_i-a)^2 \quad\quad (x_{n+1}=x_1),\] and equality occurs if and only if $x_1=x_2=\dots =x_n$.

1996 Romania National Olympiad, 2

Tags: inequalities
$ a,b,c,d \in [0,1]$ and $ x,y,z,t \in [0, \frac{1}{2}]$ and $ a+b+c+d=x+y+z+t=1$.prove that: $ (i)$ $ ax+by+cz+dt$ $ \geq$ $ min( {\frac{a+b}{2} , \frac{b+c}{2} , \frac{c+d}{2} , \frac{d+a}{2} , \frac{a+c}{2} , \frac{b+d}{2} )}$ $ (ii)$ $ ax+by+cz+dt$ $ \geq$ $ 54abcd$

2014 South East Mathematical Olympiad, 5

Let $\triangle ABC $ and $\triangle A'B'C'$ are acute triangles.Prove that\[Max\{cotA'(cotB+cotC),cotB'(cotC+cotA),cotC'(cotA+cotB)\}\ge \frac{2}{3}.\]

VMEO III 2006 Shortlist, A3

For positive real numbers $x,y,z$ that satisfy $ xy + yz + zx + xyz=4$, prove that $$\frac{x+y+z}{xy+yz+zx}\le 1+\frac{5}{247}\cdot \left( (x-y)^2+(y-z)^2+(z-x)^2\right)$$

2017 Iberoamerican, 6

Tags: inequalities
Let $n > 2$ be an even positive integer and let $a_1 < a_2 < \dots < a_n$ be real numbers such that $a_{k + 1} - a_k \leq 1$ for each $1 \leq k \leq n - 1$. Let $A$ be the set of ordered pairs $(i, j)$ with $1 \leq i < j \leq n$ such that $j - i$ is even, and let $B$ the set of ordered pairs $(i, j)$ with $1 \leq i < j \leq n$ such that $j - i$ is odd. Show that $$\prod_{(i, j) \in A} (a_j - a_i) > \prod_{(i, j) \in B} (a_j - a_i)$$

2020 Turkey MO (2nd round), 3

Tags: inequalities
If $x, y, z$ are positive real numbers find the minimum value of $$2\sqrt{(x+y+z) \left( \frac{1}{x}+ \frac{1}{y} + \frac{1}{z} \right)} - \sqrt{ \left( 1+ \frac{x}{y} \right) \left( 1+ \frac{y}{z} \right)}$$

1989 IMO Longlists, 91

For $ \phi: \mathbb{N} \mapsto \mathbb{Z}$ let us define \[ M_{\phi} \equal{} \{f: \mathbb{N} \mapsto \mathbb{Z}, f(x) > f(\phi(x)), \forall x \in \mathbb{N} \}.\] Prove that if $ M_{\phi_1} \equal{} M_{\phi_2} \neq \emptyset,$ then $ \phi_1 \equal{} \phi_2.$ Does this property remain true if \[ M_{\phi} \equal{} \{f: \mathbb{N} \mapsto \mathbb{N}, f(x) > f(\phi(x)), \forall x \in \mathbb{N} \}?\]

1998 Romania National Olympiad, 1

Let $n$ be a positive integer and $x_1,x_2,...,x_n$ be integer numbers such that $$x_1^2+x_2^2+...+x_n^2+ n^3 \le (2n - 1)(x_1+x_2+...+x_n ) + n^2$$ . Show that : a) $x_1,x_2,...,x_n$ are non-negative integers b) the number $x_1+x_2+...+x_n+n+1$ is not a perfect square.

1992 ITAMO, 5

Tags: inequalities
$a$, $b$, $c$ are real numbers. Show that $\min((a-b)^2,(b-c)^2,(c-a)^2)\leq \frac{a^2+b^2+c^2}{2}$

1991 Nordic, 3

Show that $ \frac{1}{2^2} +\frac{1}{3^2} +...+\frac{1}{n^2} <\frac{2}{3}$ for all $n \ge 2 $.

2002 Poland - Second Round, 3

Tags: inequalities
Find all positive integers $n$ such that for all real numbers $x_1,x_2,\ldots ,x_n,y_1,y_2,\ldots ,y_n$ the following inequality holds: \[ x_1x_2\ldots x_n+y_1y_2\ldots y_n\le\sqrt{x_1^2+y_1^2}\cdot\sqrt{x_2^2+y_2^2}\cdot \cdots \sqrt{x_n^2+y_n^2}\cdot \]

2020 Azerbaijan IMO TST, 1

Let $u_1, u_2, \dots, u_{2019}$ be real numbers satisfying \[u_{1}+u_{2}+\cdots+u_{2019}=0 \quad \text { and } \quad u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1.\] Let $a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$ and $b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right)$. Prove that \[ a b \leqslant-\frac{1}{2019}. \]

2007 India IMO Training Camp, 2

Let $a,b,c$ be non-negative real numbers such that $a+b\leq c+1, b+c\leq a+1$ and $c+a\leq b+1.$ Show that \[a^2+b^2+c^2\leq 2abc+1.\]

1991 Romania Team Selection Test, 3

Let $C$ be a coloring of all edges and diagonals of a convex $n$−gon in red and blue (in Romanian, rosu and albastru). Denote by $q_r(C)$ (resp. $q_a(C)$) the number of quadrilaterals having all its edges and diagonals red (resp. blue). Prove: $ \underset{C}{min} (q_r(C)+q_a(C)) \le \frac{1}{32} {n \choose 4}$

2022 Greece Junior Math Olympiad, 1

(a) Find the value of the real number $k$, for which the polynomial $P(x)=x^3-kx+2$ has the number $2$ as a root. In addition, for the value of $k$ you will find, write this polynomial as the product of two polynomials with integer coefficients. (b) If the positive real numbers $a,b$ satisfy the equation $$2a+b+\frac{4}{ab}=10,$$ find the maximum possible value of $a$.

2002 Romania National Olympiad, 2

Let $f:[0,1]\rightarrow\mathbb{R}$ be an integrable function such that: \[0<\left\vert \int_{0}^{1}f(x)\, \text{d}x\right\vert\le 1.\] Show that there exists $x_1\not= x_2, x_1,x_2\in [0,1]$, such that: \[\int_{x_1}^{x_2}f(x)\, \text{d}x=(x_1-x_2)^{2002}\]

2008 SEEMOUS, Problem 4

Let $n$ be a positive integer and $f:[0,1]\to\mathbb R$ be a continuous function such that $$\int^1_0x^kf(x)dx=1$$for every $k\in\{0,1,\ldots,n-1\}$. Prove that $$\int^1_0f(x)^2dx\ge n^2.$$

2007 Finnish National High School Mathematics Competition, 1

Show: when a prime number is divided by $30,$ the remainder is either $1$ or a prime number. Is a similar claim true, when the divisor is $60$ or $90$?

1982 Tournament Of Towns, (020) 1

(a) Prove that for any positive numbers $x_1,x_2,...,x_k$ ($k > 3$), $$\frac{x_1}{x_k+x_2}+ \frac{x_2}{x_1+x_3}+...+\frac{x_k}{x_{k-1}+x_1}\ge 2$$ (b) Prove that for every $k$ this inequality cannot be sharpened, i.e. prove that for every given $k$ it is not possible to change the number $2$ in the right hand side to a greater number in such a way that the inequality remains true for every choice of positive numbers $x_1,x_2,...,x_k$. (A Prokopiev)

2012 Greece Team Selection Test, 3

Let $a,b,c$ be positive real numbers satisfying $a+b+c=3$.Prove that $\sum_{sym} \frac{a^{2}}{(b+c)^{3}}\geq \frac{3}{8}$

2019 Jozsef Wildt International Math Competition, W. 63

If $b_k \geq a_k \geq 0$ $(k = 1, 2, 3)$ and $\alpha \geq 1$ then$$(\alpha+3)\sum \limits_{cyc}(b_1-a_1)\left((b_2+b_3)^{\alpha+2}+(a_2+a_3)^{\alpha+2}-(a_2+b_3)^{\alpha+1}-(b_2+a_3)^{\alpha+1}\right)$$ $$\leq (\alpha+2)(\alpha+3)\sum \limits_{cyc}(b_1-a_1)(b_2-a_2)(b_3^{\alpha+1}-a_3^{\alpha+1})$$ $$+ (b_3 + b_2 + a_1)^{\alpha+3}+(b_3 + a_2 + a_1)^{\alpha+3}+(a_3 + b_2 + a_1)^{\alpha+3}+(a_3 + a_2 + b_1)^{\alpha+3}$$ $$-(b_3 + b_2 + b_1)^{\alpha+3}-(b_3 + a_2 + a_1)^{\alpha+3}-(a_3 + b_2 + b_1)^{\alpha+3}-(a_3 + a_2 + a_1)^{\alpha+3}$$

2019 China Team Selection Test, 5

Tags: inequalities
Find all integer $n$ such that the following property holds: for any positive real numbers $a,b,c,x,y,z$, with $max(a,b,c,x,y,z)=a$ , $a+b+c=x+y+z$ and $abc=xyz$, the inequality $$a^n+b^n+c^n \ge x^n+y^n+z^n$$ holds.

1994 Korea National Olympiad, Problem 2

Let $ \alpha,\beta,\gamma$ be the angles of a triangle. Prove that $csc^2\frac{\alpha}{2}+csc^2\frac{\beta}{2}+csc^2\frac{\gamma}{2} \ge 12$ and find the conditions for equality.