This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2023 Indonesia TST, 2

Let $n \geqslant 3$ be an integer, and let $x_1,x_2,\ldots,x_n$ be real numbers in the interval $[0,1]$. Let $s=x_1+x_2+\ldots+x_n$, and assume that $s \geqslant 3$. Prove that there exist integers $i$ and $j$ with $1 \leqslant i<j \leqslant n$ such that \[2^{j-i}x_ix_j>2^{s-3}.\]

2011 Bogdan Stan, 1

If $ a,b,c $ are all in the interval $ (0,1) $ or all in the interval $ \left( 1,\infty \right), $ then $$ 1\le\sum_{\text{cyc}} \frac{\log_a^7 b\cdot \log_b^3c}{\log_c a +2\log_a b} . $$ [i]Gheorghe Duță[/i]

1975 Chisinau City MO, 103

Prove the inequality: $$\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1974}-\frac{1}{1975}<\frac{2}{5}$$

2022 China Girls Math Olympiad, 1

Consider all the real sequences $x_0,x_1,\cdots,x_{100}$ satisfying the following two requirements: (1)$x_0=0$; (2)For any integer $i,1\leq i\leq 100$,we have $1\leq x_i-x_{i-1}\leq 2$. Find the greatest positive integer $k\leq 100$,so that for any sequence $x_0,x_1,\cdots,x_{100}$ like this,we have \[x_k+x_{k+1}+\cdots+x_{100}\geq x_0+x_1+\cdots+x_{k-1}.\]

2019 Tuymaada Olympiad, 7

Tags: grid , inequalities
$N$ cells chosen on a rectangular grid. Let $a_i$ is number of chosen cells in $i$-th row, $b_j$ is number of chosen cells in $j$-th column. Prove that $$ \prod_{i} a_i! \cdot \prod_{j} b_j! \leq N! $$

2016 Postal Coaching, 2

Find all $n \in \mathbb N$ such that $n = \varphi (n) + 402$, where $\varphi$ denotes the Euler phi function.

1995 IMO, 2

Let $ a$, $ b$, $ c$ be positive real numbers such that $ abc \equal{} 1$. Prove that \[ \frac {1}{a^{3}\left(b \plus{} c\right)} \plus{} \frac {1}{b^{3}\left(c \plus{} a\right)} \plus{} \frac {1}{c^{3}\left(a \plus{} b\right)}\geq \frac {3}{2}. \]

1984 IMO Longlists, 5

Tags: inequalities
For a real number $x$, let $[x]$ denote the greatest integer not exceeding $x$. If $m \ge 3$, prove that \[\left[\frac{m(m+1)}{2(2m-1)}\right]=\left[\frac{m+1}{4}\right]\]

2016 Taiwan TST Round 1, 2

Tags: inequalities
Let $a,b,c$ be nonnegative real numbers such that $(a+b)(b+c)(c+a) \neq0$. Find the minimum of $(a+b+c)^{2016}(\frac{1}{a^{2016}+b^{2016}}+\frac{1}{b^{2016}+c^{2016}}+\frac{1}{c^{2016}+a^{2016}})$.

2010 Today's Calculation Of Integral, 611

Let $g(t)$ be the minimum value of $f(x)=x2^{-x}$ in $t\leq x\leq t+1$. Evaluate $\int_0^2 g(t)dt$. [i]2010 Kumamoto University entrance exam/Science[/i]

2010 India IMO Training Camp, 4

Let $a,b,c$ be positive real numbers such that $ab+bc+ca\le 3abc$. Prove that \[\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\le \sqrt{2} (\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a})\]

2012 India IMO Training Camp, 3

Let $\mathbb{R}^{+}$ denote the set of all positive real numbers. Find all functions $f:\mathbb{R}^{+}\longrightarrow \mathbb{R}$ satisfying \[f(x)+f(y)\le \frac{f(x+y)}{2}, \frac{f(x)}{x}+\frac{f(y)}{y}\ge \frac{f(x+y)}{x+y},\] for all $x, y\in \mathbb{R}^{+}$.

1969 Polish MO Finals, 2

Given distinct real numbers $a_1,a_2,...,a_n$, find the minimum value of the function $$y = |x-a_1|+|x-a_2|+...+|x-a_n|, \,\,\, x \in R.$$

2016 Korea - Final Round, 4

If $x,y,z$ satisfies $x^2+y^2+z^2=1$, find the maximum possible value of $$(x^2-yz)(y^2-zx)(z^2-xy)$$

1973 All Soviet Union Mathematical Olympiad, 178

The real numbers $a,b,c$ satisfy the condition: for all $x$, such that for $ -1 \le x \le 1$, the inequality $$| ax^2 + bx + c | \le 1$$ is held. Prove that for the same $x$ , $$| cx^2 + bx + a | \le 2$$

1950 Moscow Mathematical Olympiad, 182

Prove that $\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{7}{8} ... \frac{99}{100 } <\frac{1}{10}$.

2005 National Olympiad First Round, 11

For the real pairs $(x,y)$ satisfying the equation $x^2 + y^2 + 2x - 6y = 6$, which of the following cannot be equal to $(x-1)^2 + (y-2)^2$? $ \textbf{(A)}\ 2 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}\ 23 \qquad\textbf{(E)}\ 30 $

2012 AMC 10, 20

Bernado and Silvia play the following game. An integer between 0 and 999, inclusive, is selected and given to Bernado. Whenever Bernado receives a number, he doubles it and passes the result to Silvia. Whenever Silvia receives a number, she adds 50 to it and passes the result to Bernado. The winner is the last person who produces a number less than 1000. Let $N$ be the smallest initial number that results in a win for Bernado. What is the sum of the digits of $N$? $\textbf{(A)}\ 7 \qquad\textbf{(B)}\ 8 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 10 \qquad\textbf{(E)}\ 11$

1993 Italy TST, 1

Let $x_1,x_2,...,x_n$ ($n \ge 2$) be positive numbers with the sum $1$. Prove that $$\sum_{i=1}^{n} \frac{1}{\sqrt{1-x_i}} \ge n\sqrt{\frac{n}{n-1}} $$

2010 Indonesia TST, 4

Given a positive integer $n$ and $I = \{1, 2,..., k\}$ with $k$ is a positive integer. Given positive integers $a_1, a_2, ..., a_k$ such that for all $i \in I$: $1 \le a_i \le n$ and $$\sum_{i=1}^k a_i \ge 2(n!).$$ Show that there exists $J \subseteq I$ such that $$n! + 1 \ge \sum_{j \in J}a_j >\sqrt {n! + (n - 1)n}$$

2010 Contests, 2

Let $a,b,c$ be positive real numbers for which $a+b+c=3$. Prove the inequality \[\frac{a^3+2}{b+2}+\frac{b^3+2}{c+2}+\frac{c^3+2}{a+2}\ge3\]

2000 Belarus Team Selection Test, 7.1

For any positive numbers $a,b,c,x,y, z$, prove the inequality $ \frac{a^3}{x}+ \frac{b^3}{y}+ \frac{c^3}{z} \ge \frac{(a+b+c)^3}{3(x+y+z)}$

2009 China National Olympiad, 1

Given an integer $ n > 3.$ Let $ a_{1},a_{2},\cdots,a_{n}$ be real numbers satisfying $ min |a_{i} \minus{} a_{j}| \equal{} 1, 1\le i\le j\le n.$ Find the minimum value of $ \sum_{k \equal{} 1}^n|a_{k}|^3.$

2023 Czech and Slovak Olympiad III A., 2

Let $n$ be a positive integer, where $n \geq 3$ and let $a_1, a_2, ..., a_n$ be the lengths of sides of some $n$-gon. Prove that $$a_1 + a_2 + ... + a_n \geq \sqrt{2 \cdot (a_1^2 + a_2^2 + ... + a_n^2)} $$

2024 Canadian Mathematical Olympiad Qualification, 4

A sequence $\{a_i\}$ is given such that $a_1 = \frac13$ and for all positive integers $n$ $$a_{n+1} =\frac{a^2_n}{a^2_n - a_n + 1}.$$ Prove that $$\frac12 - \frac{1}{3^{2^{n-1}}} < a_1 + a_2 +... + a_n <\frac12 - \frac{1}{3^{2^n}} ,$$ for all positive integers $n$.