This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

2011 Austria Beginners' Competition, 3

Let $x, y$ be positive real numbers with $x + y + xy= 3$. Prove that$$x + y\ge 2.$$ When does equality holds? (K. Czakler, GRG 21, Vienna)

2002 India IMO Training Camp, 15

Let $x_1,x_2,\ldots,x_n$ be arbitrary real numbers. Prove the inequality \[ \frac{x_1}{1+x_1^2} + \frac{x_2}{1+x_1^2 + x_2^2} + \cdots + \frac{x_n}{1 + x_1^2 + \cdots + x_n^2} < \sqrt{n}. \]

2013 Costa Rica - Final Round, A1

Let the real numbers $x, y, z$ be such that $x + y + z = 0$. Prove that $$6(x^3 + y^3 + z^3)^2 \le (x^2 + y^2 + z^2)^3.$$

2005 Germany Team Selection Test, 1

Given the positive numbers $a$ and $b$ and the natural number $n$, find the greatest among the $n + 1$ monomials in the binomial expansion of $\left(a+b\right)^n$.

PEN O Problems, 53

Suppose that the set $M=\{1,2,\cdots,n\}$ is split into $t$ disjoint subsets $M_{1}$, $\cdots$, $M_{t}$ where the cardinality of $M_i$ is $m_{i}$, and $m_{i} \ge m_{i+1}$, for $i=1,\cdots,t-1$. Show that if $n>t!\cdot e$ then at least one class $M_z$ contains three elements $x_{i}$, $x_{j}$, $x_{k}$ with the property that $x_{i}-x_{j}=x_{k}$.

2006 Irish Math Olympiad, 4

Find the greatest value and the least value of $x+y$ where $x,y$ are real numbers, with $x\ge -2$, $y\ge -3$ and $$x-2\sqrt{x+2}=2\sqrt{y+3}-y$$

2023-IMOC, A5

We can conduct the following moves to a real number $x$: choose a positive integer $n$, and positives reals $a_1,a_2,\cdots, a_n$ whose reciprocals sum up to $1$. Let $x_0=x$, and $x_k=\sqrt{x_{k-1}a_k}$ for all $1\leq k\leq n$. Finally, let $y=x_n$. We said $M>0$ is "tremendous" if for any $x\in \mathbb{R}^+$, we can always choose $n,a_1,a_2,\cdots, a_n$ to make the resulting $y$ smaller than $M$. Find all tremendous numbers. [i]Proposed by ckliao914.[/i]

1940 Moscow Mathematical Olympiad, 069

Let $a_1, ...,, a_n$ be positive numbers. Prove the inequality: $$\frac{a_1}{a_2}+\frac{a_2}{a_3}+\frac{a_3}{a_4}+ ... +\frac{a_{n-1}}{a_n}+ \frac{a_n}{a_1} \ge n$$

2008 Ukraine Team Selection Test, 3

Tags: inequalities
For positive $ a, b, c, d$ prove that $ (a \plus{} b)(b \plus{} c)(c \plus{} d)(d \plus{} a)(1 \plus{} \sqrt [4]{abcd})^{4}\geq16abcd(1 \plus{} a)(1 \plus{} b)(1 \plus{} c)(1 \plus{} d)$

2008 Germany Team Selection Test, 1

Tags: inequalities
Let $ a_1, a_2, \ldots, a_{100}$ be nonnegative real numbers such that $ a^2_1 \plus{} a^2_2 \plus{} \ldots \plus{} a^2_{100} \equal{} 1.$ Prove that \[ a^2_1 \cdot a_2 \plus{} a^2_2 \cdot a_3 \plus{} \ldots \plus{} a^2_{100} \cdot a_1 < \frac {12}{25}. \] [i]Author: Marcin Kuzma, Poland[/i]

2006 Germany Team Selection Test, 2

In an acute triangle $ABC$, let $D$, $E$, $F$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $BC$, $CA$, $AB$, respectively, and let $P$, $Q$, $R$ be the feet of the perpendiculars from the points $A$, $B$, $C$ to the lines $EF$, $FD$, $DE$, respectively. Prove that $p\left(ABC\right)p\left(PQR\right) \ge \left(p\left(DEF\right)\right)^{2}$, where $p\left(T\right)$ denotes the perimeter of triangle $T$ . [i]Proposed by Hojoo Lee, Korea[/i]

1989 Cono Sur Olympiad, 3

Show that reducing the dimensions of a cuboid we can't get another cuboid with half the volume and half the surface.

2013 Estonia Team Selection Test, 3

Let $x_1,..., x_n$ be non-negative real numbers, not all of which are zeros. (i) Prove that $$1 \le \frac{\left(x_1+\frac{x_2}{2}+\frac{x_3}{3}+...+\frac{x_n}{n}\right)(x_1+2x_2+3x_3+...+nx_n)}{(x_1+x_2+x_3+...+x_n)^2} \le \frac{(n+1)^2}{4n}$$ (ii) Show that, for each $n > 1$, both inequalities can hold as equalities.

2023 Korea - Final Round, 6

For positive integer $n\geq 3$ and real numbers $a_1,...,a_n,b_1,...,b_n$, prove the following. $$\sum_{i=1}^n a_i(b_i-b_{i+3})\leq\frac{3n}{8}\sum_{i=1}^n((a_i-a_{i+1})^2+(b_i-b_{i+1})^2)$$ ($a_{n+1}=a_1$, and for $i=1,2,3$ $b_{n+i}=b_i$.)

MIPT Undergraduate Contest 2019, 1.5 & 2.5

Prove the inequality $$\sum _{k = 1} ^n (x_k - x_{k-1})^2 \geq 4 \sin ^2 \frac{\pi}{2n} \cdot \sum ^n _{k = 0} x_k ^2$$ for any sequence of real numbers $x_0, x_1, ..., x_n$ for which $x_0 = x_n = 0.$

2005 MOP Homework, 2

Find all real numbers $x$ such that $\lfloor x^2-2x \rfloor+2\lfloor x \rfloor=\lfloor x \rfloor^2$. (For a real number $x$, $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$.)

2002 Federal Math Competition of S&M, Problem 2

Let $O$ be a point inside a triangle $ABC$ and let the lines $AO,BO$, and $CO$ meet sides $BC,CA$, and $AB$ at points $A_1,B_1$, and $C_1$, respectively. If $AA_1$ is the longest among the segments $AA_1,BB_1,CC_1$, prove that $$OA_1+OB_1+OC_1\le AA_1.$$

1988 Romania Team Selection Test, 14

Let $\Delta$ denote the set of all triangles in a plane. Consider the function $f: \Delta\to(0,\infty)$ defined by $f(ABC) = \min \left( \dfrac ba, \dfrac cb \right)$, for any triangle $ABC$ with $BC=a\leq CA=b\leq AB = c$. Find the set of values of $f$.

2018 Brazil National Olympiad, 1

We say that a polygon $P$ is [i]inscribed[/i] in another polygon $Q$ when all vertices of $P$ belong to perimeter of $Q$. We also say in this case that $Q$ is [i]circumscribed[/i] to $P$. Given a triangle $T$, let $l$ be the maximum value of the side of a square inscribed in $T$ and $L$ be the minimum value of the side of a square circumscribed to $T$. Prove that for every triangle $T$ the inequality $L/l \ge 2$ holds and find all the triangles $T$ for which the equality occurs.

1967 Putnam, B2

Tags: inequalities
Let $0\leq p,r\leq 1$ and consider the identities $$a)\; (px+(1-p)y)^{2}=a x^2 +bxy +c y^2, \;\;\;\, b)\; (px+(1-p)y)(rx+(1-r)y) =\alpha x^2 + \beta xy + \gamma y^2.$$ Show that $$ a)\; \max(a,b,c) \geq \frac{4}{9}, \;\;\;\; b)\; \max( \alpha, \beta , \gamma) \geq \frac{4}{9}.$$

1971 Poland - Second Round, 2

Prove that if $ A, B, C $ are angles of a triangle, then $$ 1 < \cos A + \cos B + \cos C \leq \frac{3}{2}.$$

2008 National Olympiad First Round, 31

Tags: inequalities
If the inequality \[ ((x+y)^2+4)((x+y)^2-2)\geq A\cdot (x-y)^2 \] is hold for every real numbers $x,y$ such that $xy=1$, what is the largest value of $A$? $ \textbf{(A)}\ 12 \qquad\textbf{(B)}\ 14 \qquad\textbf{(C)}\ 16 \qquad\textbf{(D)}\ 18 \qquad\textbf{(E)}\ 20 $

Kvant 2019, M2544

Let $P(x)=x^n +a_1x^{n-1}+a_2x^{n-2}+\ldots+a_{n-1}x+a_n$ be a polynomial of degree $n$ and $n$ real roots, all of them in the interval $(0,1)$. Prove that for all $k=\overline{1,n}$ the following inequality holds: \[(-1)^k(a_k+a_{k+1}+\ldots+a_n)>0.\] [i]Proposed by N. Safaei (Iran)[/i]

1997 Austrian-Polish Competition, 7

(a) Prove that $p^2 + q^2 + 1 > p(q + 1)$ for any real numbers $p, q$, . (b) Determine the largest real constant $b$ such that the inequality $p^2 + q^2 + 1 \ge bp(q + 1)$ holds for all real numbers $p, q$ (c) Determine the largest real constant c such that the inequality $p^2 + q^2 + 1 \ge cp(q + 1)$ holds for all integers $p, q$.

2021 Peru IMO TST, P1

Suppose positive real numers $x,y,z,w$ satisfy $(x^3+y^3)^4=z^3+w^3$. Prove that $$x^4z+y^4w\geq zw.$$