This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6530

1991 Austrian-Polish Competition, 5

If $x,y, z$ are arbitrary positive numbers with $xyz = 1$, prove the inequality $$x^2+y^2+z^2 + xy+yz + zx \ge 2(\sqrt{x} +\sqrt{y}+ \sqrt{z})$$.

2003 China Team Selection Test, 3

Tags: inequalities
Let $a_{1},a_{2},...,a_{n}$ be positive real number $(n \geq 2)$,not all equal,such that $\sum_{k=1}^n a_{k}^{-2n}=1$,prove that: $\sum_{k=1}^n a_{k}^{2n}-n^2.\sum_{1 \leq i<j \leq n}(\frac{a_{i}}{a_{j}}-\frac{a_{j}}{a_{i}})^2 >n^2$

2010 Rioplatense Mathematical Olympiad, Level 3, 2

Find the minimum and maximum values of $ S=\frac{a}{b}+\frac{c}{d} $ where $a$, $b$, $c$, $d$ are positive integers satisfying $a + c = 20202$ and $b + d = 20200$.

2011 USA TSTST, 6

Let $a, b, c$ be positive real numbers in the interval $[0, 1]$ with $a+b, b+c, c+a \ge 1$. Prove that \[ 1 \le (1-a)^2 + (1-b)^2 + (1-c)^2 + \frac{2\sqrt{2} abc}{\sqrt{a^2+b^2+c^2}}. \]

2025 Bulgarian Spring Mathematical Competition, 12.1

In terms of the real numbers $a$ and $b$ determine the minimum value of $$ \sqrt{(x+a)^2+1}+\sqrt{(x+1-a)^2+1}+\sqrt{(x+b)^2+1}+\sqrt{(x+1-b)^2+1}$$ as well as all values of $x$ which attain it.

1997 Pre-Preparation Course Examination, 5

Let $ABC$ be an acute angled triangle, $O$ be the circumcenter of $ABC$, and $R$ be the cicumradius. $AO$ meets the circumcircle of $BOC$ at $A'$, $BO$ meets the circumcircle of $COA$, and $CO$ meets the circumcircle of $AOB$ at $C'$. Prove that \[OA' \cdot OB' \cdot OC' \geq 8R^3.\] When does inequality occur?

2005 France Pre-TST, 4

Tags: inequalities
Let $x,y,z$ be positive real numbers such that $x^2+y^2+z^2 = 25.$ Find the minimum of $\frac {xy} z + \frac {yz} x + \frac {zx} y .$ Pierre.

2020 South East Mathematical Olympiad, 1

Let $f(x)=a(3a+2c)x^2-2b(2a+c)x+b^2+(c+a)^2$ $(a,b,c\in R, a(3a+2c)\neq 0).$ If $$f(x)\leq 1$$for any real $x$, find the maximum of $|ab|.$

1984 IMO Longlists, 19

Let $ABC$ be an isosceles triangle with right angle at point $A$. Find the minimum of the function $F$ given by \[F(M) = BM +CM-\sqrt{3}AM\]

1968 All Soviet Union Mathematical Olympiad, 109

Two finite sequences $a_1,a_2,...,a_n,b_1,b_2,...,b_n$ are just rearranged sequence $1, 1/2, ... , 1/n$ with $$a_1+b_1\ge a_2+b_2\ge...\ge a_n+b_n.$$ Prove that $a_m+a_n\ge 4/m$ for every $m$ ($1\le m\le n$) .

2018 Hanoi Open Mathematics Competitions, 14

Let $a,b, c$ denote the real numbers such that $1 \le a, b, c\le 2$. Consider $T = (a - b)^{2018} + (b - c)^{2018} + (c - a)^{2018}$. Determine the largest possible value of $T$.

2013 Turkmenistan National Math Olympiad, 1

Find the product $ \cos a \cdot \cos 2a\cdot \cos 3a \cdots \cos 1006a$ where $a=\frac{2\pi}{2013}$.

2015 Dutch Mathematical Olympiad, 5

Given are (not necessarily positive) real numbers $a, b$, and $c$ for which $|a - b| \ge |c| , |b - c| \ge |a|$ and $|c - a| \ge |b|$ . Prove that one of the numbers $a, b$, and $c$ is the sum of the other two.

2010 Albania Team Selection Test, 4

With $\sigma (n)$ we denote the sum of natural divisors of the natural number $n$. Prove that, if $n$ is the product of different prime numbers of the form $2^k-1$ for $k \in \mathbb{N}$($Mersenne's$ prime numbers) , than $\sigma (n)=2^m$, for some $m \in \mathbb{N}$. Is the inverse statement true?

2010 Iran MO (2nd Round), 4

Let $P(x)=ax^3+bx^2+cx+d$ be a polynomial with real coefficients such that \[\min\{d,b+d\}> \max\{|{c}|,|{a+c}|\}\] Prove that $P(x)$ do not have a real root in $[-1,1]$.

2000 Stanford Mathematics Tournament, 25

Tags: inequalities
How many points does one have to place on a unit square to guarantee that two of them are strictly less than 1/2 unit apart?

2020 Iran MO (3rd Round), 2

Tags: inequalities
let $a_1,a_2,...,a_n$,$b_1,b_2,...,b_n$,$c_1,c_2,...,c_n$ be real numbers. prove that $$ \sum_{cyc}{ \sqrt{\sum_{i \in \{1,...,n\} }{ (3a_i-b_i-c_i)^2}}} \ge \sum_{cyc}{\sqrt{\sum_{i \in \{1,2,...,n\}}{a_i^2}}}$$

2017 Saudi Arabia JBMO TST, 1

Let $a,b,c>0$ and $a^2+b^2+c^2=3$ . Prove that $$ \frac{a(a-b^2)}{a+b^2}+\frac{b(b-c^2)}{b+c^2}+\frac{c(c-a^2)}{c+a^2}\ge 0.$$

2023 Regional Competition For Advanced Students, 1

Let $a$, $b$ and $c$ be real numbers with $0 \le a, b, c \le 2$. Prove that $$(a - b)(b - c)(a- c) \le 2.$$ When does equality hold? [i](Karl Czakler)[/i]

2010 Contests, 2

Tags: inequalities
Let $a,b,c$ be positive reals. Prove that \[ \frac{(a-b)(a-c)}{2a^2 + (b+c)^2} + \frac{(b-c)(b-a)}{2b^2 + (c+a)^2} + \frac{(c-a)(c-b)}{2c^2 + (a+b)^2} \geq 0. \] [i]Calvin Deng.[/i]

2014 Indonesia MO Shortlist, A5

Determine the largest natural number $m$ such that for each non negative real numbers $a_1 \ge a_2 \ge ... \ge a_{2014} \ge 0$ , it is true that $$\frac{a_1+a_2+...+a_m}{m}\ge \sqrt{\frac{a_1^2+a_2^2+...+a_{2014}^2}{2014}}$$

2007 India National Olympiad, 1

In a triangle $ ABC$ right-angled at $ C$ , the median through $ B$ bisects the angle between $ BA$ and the bisector of $ \angle B$. Prove that \[ \frac{5}{2} < \frac{AB}{BC} < 3\]

2006 All-Russian Olympiad, 1

Prove that $\sin\sqrt{x}<\sqrt{\sin x}$ for every real $x$ such that $0<x<\frac{\pi}{2}$.

1995 China National Olympiad, 3

Find the minimun value of $\sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{k=1}^{10}|k(x+y-10i)(3x-6y-36j)(19x+95y-95k)|$ , where $x,y$ are integers.

2012 India IMO Training Camp, 2

Let $0<x<y<z<p$ be integers where $p$ is a prime. Prove that the following statements are equivalent: $(a) x^3\equiv y^3\pmod p\text{ and }x^3\equiv z^3\pmod p$ $(b) y^2\equiv zx\pmod p\text{ and }z^2\equiv xy\pmod p$